Skip to main content
Log in

The before-eruption water content of some high-alumina magmas

  • Published:
Bulletin Volcanologique Aims and scope Submit manuscript

Abstract

An analysis by difference technique yields estimates of H2O in basaltic and andesitic glasses, which are sufficiently accurate (± 1.4 percent absolute) to be useful. Glass inclusions trapped in large olivine crystals from tephra-rich eruptions have 1 to 5 percent H2O. The highest H2O contents are found in basaltic inclusions in magnesium rich olivines from Mount Shasta, California. Andesitic inclusions have less H2O. It seems probable that tephra-rich high-alumina magmas evolve in a vapor saturated environment at fairly shallow depths (few kilometers). This depth appears to be less for Medicine Lake Highlands than for Mount Shasta. Vapor saturation probably inhibits the rise of magma, thus the initial vapor content of a magma may govern its stagnation level. Volatile-rich parental magmas like Mount Shasta basalt probably tend to stagnate at deeper levels, crystallize early amphibole and produce comparatively calcic differentiates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, A. T., in press,a, Chlorine and sulfur in and out of some basaltic magmas. Submitted to Geol. Soc. Amer. Bull.

  • -----, in press,b, Evidence for a magnesium-rich magma beneath Mt. Shasta, California. Submitted to Jour. Petrol.

  • ————— andGotteried, D., 1971,Contrasting behavior of P, Ti, and Nb in a differentiated high-alumina olivine tholeiite and a calc-alkaline andesitic suite. Geol. Soc. Amer. Bull.,82, p. 1929–1942.

    Article  Google Scholar 

  • ————— andWright, T. L., 1972,Phenocrysts and glass inclusions and their bearing on oxidation and mixing of basaltic magmas, Kilauea volcano, Hawaii. Amer. Mineral.,57, p. 188–216.

    Google Scholar 

  • Anderson, C. A., 1941,Volcanoes of the Medicine Lake Highland, Calif. Calif. Univ. Dept. Geol. Soc., Bull. 25, No. 7, p. 347–422.

    Google Scholar 

  • Best, M. G., 1963,Petrology of the Guadalupe igneous complex southwestern Sierra, Aevada foothills, Calif. J. Petro.,4, p. 223–259.

    Google Scholar 

  • —————, 1969,Differentiation of calc-alkaline magmas. Orc. Dept. Geol. Mineral. Industries, Bull. 65, p. 65–75.

    Google Scholar 

  • Burnham, C. W., 1967,Hydrothermal fluids at the magmatic stage, inH. L. Barnes, editor,Geochemistry of Hydrothermal Ore Deposits, Holt, Rinehart and Winston, 670 pp.

  • Clocchiatti, M. R., 1972,Les cristaux de quartz des ponces de la Vallée des Dix Mille Fumees (Katmai, Alaska). Compte Rendu Acad. Sci. Paris,274, p. 3037–3041.

    Google Scholar 

  • Dickinson, W. R., 1968,Circum-Pacific andesite types. J. Geophys. Res.,73, p. 2261–2269.

    Article  Google Scholar 

  • Eggler, D. H., 1972,Water-saturated and undersaturated melting relations in a Paricutin andesite and an estimate of water content in the natural magma. Contr. Mineral. Petrol.,34, p. 261–271.

    Article  Google Scholar 

  • Hamilton, D. L. andAnderson, C. M., 1967,Effects of water and oxygen pressures on the crystallization of basaltic magmas. inHess, H. H. andAric Poldervaart, editors,Basalts, 1. Interscience, New York, p. 445–482.

    Google Scholar 

  • Hamilton, W., 1964,Origin of high-alumina basalt, andesite, and dacite magmas. Science,146, p. 3644.

    Article  Google Scholar 

  • Kuno, H., 1950,Petrology of Hakone volcano and the adjacent areas, Japan. Geol. Soc. Amer. Bull.,61, p. 957–1020.

    Article  Google Scholar 

  • —————, 1959,Origin of Cenozoic petrographic provinces of Japan and surrounding areas. Bull. Volcanol.,20, p. 37–76.

    Article  Google Scholar 

  • —————, 1960,High-alumina basalt. J. Petrol.,1, p. 121–145.

    Google Scholar 

  • Markhinin, E. K., 1962,On the possibility of estimating the amount of juvenile water participating in volcanic explosions. Bull. Volcanol.,24, p. 187–191.

    Google Scholar 

  • Moore, J. G., 1965,Petrology of deep-sea basalt near Hawaii. Amer. J. Sci.,263, p. 40–52.

    Article  Google Scholar 

  • —————, 1970,Water content of basalt erupted on the ocean floor. Contr. Mineral. Petrol.,28, p. 272–279.

    Article  Google Scholar 

  • Mueller, R. F., 1969,Hydration, oxidation, and the origin of the calc-alkali series. NASA TN D-5400, p. 1–27.

  • Murata, K. J. andRichter, D. H., 1966,Chemistry of the lavas of the 1959–60 eruption of Kilauea volcano, Hawaii. Geol. Survey Prof. Paper 637-A, p. A1–A26.

  • Osborn, E. F., 1969,The complementariness of orogenic andesite and alpine peridotite. Geochim. Cosmochim. Acta,33, p. 307–324.

    Article  Google Scholar 

  • Peacock, M. A., 1931,Classification of igneous rock series. J. Geol.,39, p. 54–67.

    Article  Google Scholar 

  • Peck, D. L., Wright, T. L. andMoore, J. G., 1966,Crystallization of Alae lava lake, Hawaii. Bull. Volcanol.,29, p. 629–656.

    Google Scholar 

  • Peck, L. C., 1964,Systematic analysis of silicates. U. S. Geol. Survey, Bull. 1170, 89 pp.

  • Roeder, P. L. andEmslie, R. F., 1970,Olivine-liquid equilibrium. Contr. Mineral. Petrol.,29, p. 275–289.

    Article  Google Scholar 

  • Sharma, T. andClayton, R. N., 1964,Oxygen analyses of minerals and oxides. Analytical Chem.,36, p. 2001–2002.

    Article  Google Scholar 

  • Smith, A. L. andCarmichael, I. S. E., 1968,Quaternary lavas from the southern Cascades, Western U.S.A. Contr. Mineral. Petrol.,19, p. 212–238.

    Article  Google Scholar 

  • Smith, J. V., 1965,X-ray-emission microanalysis of rock-forming minerals. I, Experimental techniques. J. Geol.,73, No. 6, p. 830–864.

    Google Scholar 

  • Williams, H., 1934,Mount Shasta, California. Zeitschr. Vulkanol.,15, p. 225–253.

    Google Scholar 

  • Yoder, H. S., 1969,Calcalkalic andesites: experimental data bearing on the origin of their assumed characteristics. Oregon Dept. Geol. Mineral. Industries, Bull. 65, p. 77–89.

    Google Scholar 

  • ————— andTilley, C. E., 1962,Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J. Petrol.,3, p. 342–532.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, A.T. The before-eruption water content of some high-alumina magmas. Bull Volcanol 37, 530–552 (1973). https://doi.org/10.1007/BF02596890

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02596890

Keywords

Navigation