Skip to main content
Log in

Bayesian conjugate analysis of the Galton-Watson process

  • Published:
Test Aims and scope Submit manuscript

Abstract

In this article we consider the Bayesian statistical analysis of a simple Galton-Watson process. Problems of interest include estimation of the offspring distribution, classification of the process, and prediction. We propose two simple analytic approximations to the posterior marginal distribution of the reproduction mean. This posterior distribution suffices to classify the process. In order to assess the accuracy of these approximations, a comparison is provided with a computationally more expensive approximation obtained via standard Monte Carlo techniques. Similarly, a fully analytic approximation to the predictive distribution of the future size of the population is discussed. Sampling-based and hybrid approximations to this distribution are also considered. Finally, we present some illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basawa, I.V. and B.L.S. Prakasa-Rao (1980).Statistical Inference for Stochastic Processes. Academic Press, New York.

    MATH  Google Scholar 

  • Bernardo, J.M. (1979). Reference posterior distributions for Bayesian inference (with discussion).Journal of the Royal Statistical Society, B,41, 113–147.

    MATH  MathSciNet  Google Scholar 

  • Bernardo, J.M. and A.F.M. Smith (1994).Bayesian theory. John Wiley, Chichester.

    MATH  Google Scholar 

  • Berger, J.O. and J.M. Bernardo (1992). On the development of reference priors (with discussion). InBayesian Statistics 4, (J.M. Bernardo, J.O. Berger, A.P. Dawid, and A.F.M. Smith eds.) Clarendon Press, 35–60.

  • Box, G.E.P. and G.C. Tiao (1973).Bayesian Inference in Statistical Analysis. Addison-Wesley.

  • DeGroot, M.H. (1970).Optimal Statistical Decisions. McGraw-Hill, New York.

    MATH  Google Scholar 

  • Diaconis, P. and D. Ylvisaker (1985). Quantifying prior opinion (with discussion). InBayesian Statistics, 2, (J.M. Bernardo, M.H. DeGroot, D.V. Lindley and A.F.M. Smith eds.) North-Holland, 133–156.

  • Dion, J.P. (1972). Estimation des probabilités initiales et de la moyenne d'un processus de Galton-Watson. Ph.D. Thesis. University of Montreal, Montreal.

    Google Scholar 

  • Dion, J.P. (1974). Estimation of the mean and the initial probabilities of the branching processes.Journal of Applied Probability,11, 687–694.

    Article  MathSciNet  Google Scholar 

  • Dion, J.P. and N. Keiding (1978). Statistical inference in branching processes. InBranching Processes, (A. Joffe, and P. Ney eds.) Marcel Dekker, 105–140.

  • Gani, J. and I.W. Saunders (1977). Fitting a model to the growth of yeast colonies.Biometrics,33, 113–120.

    Article  MATH  Google Scholar 

  • Gutiérrez-Peña, E. (1992). Expected logarithmic divergence for exponential families. InBayesian Statistics, 4, (J.M. Bernardo, J.O. Berger, A.P. Dawid, and A.F.M. Smith eds.) Clarendon Press, 669–674.

  • Guttorp, P. (1991).Statistical Inference for Branching Processes. John Wiley, New York.

    MATH  Google Scholar 

  • Harris, T.E. (1963).The Theory of Branching Processes. Springer Verlag, Berlin.

    MATH  Google Scholar 

  • Heyde, C.C. (1979). On assessing the potential severity of an outbreak of a rare infectious disease: a Bayesian approach.Australian Journal of Statistics,21, 282–292.

    MATH  MathSciNet  Google Scholar 

  • Jagers, P. (1975).Branching Processes with Biological Applications. John Wiley, New York.

    MATH  Google Scholar 

  • Jeffreys, H. (1946). An invariant form for the prior probability in estimation problems.Proceedings of the Royal Society, A,186, 453–461.

    MATH  MathSciNet  Google Scholar 

  • Johnson, R.A., V. Susarla and L. van Ryzin (1979). Bayesian non-parametric estimation for age-dependent branching processes.Stochastic Processes and their Applications,9, 307–318.

    Article  MATH  MathSciNet  Google Scholar 

  • Karlin, S. and J.M. Taylor (1975).A First Course in Stochastic Processes. Academic Press, New York.

    MATH  Google Scholar 

  • Kass, R.E., L. Tierney and J.B. Kadane (1991). Laplace's method in Bayesian analysis. InStatistical Multiple Integration, (N. Fluornoy and R.K. Tsutakawa eds.) ASA, 89–99.

  • Maki, E. and P. McDunnough (1989). What can or can't be estimated in branching and related processes?Stochastic Processes and their Applications,31, 307–314.

    Article  MATH  MathSciNet  Google Scholar 

  • Mendoza, M. (1994). Asymptotic normality under transformations: a result with Bayesian applications.Test,3, 173–180.

    Article  MATH  MathSciNet  Google Scholar 

  • Prakasa-Rao, B.L.S. (1992). Nonparametric estimation for Galton-Watson type processes.Statistics and Probability Letters,13, 289–293.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The first author is supported by the Alberto Baillères Chair on Insurance and International Finance of ITAM. This work was partially supported by Sistema Nacional de Investigadores, Mexico.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendoza, M., Gutiérrez-Peña, E. Bayesian conjugate analysis of the Galton-Watson process. Test 9, 149–171 (2000). https://doi.org/10.1007/BF02595856

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595856

Key Words

AMS subject classification

Navigation