Skip to main content
Log in

Contributions of empirical and quantile processes to the asymptotic theory of goodness-of-fit tests

  • Published:
Test Aims and scope Submit manuscript

Abstract

This paper analyzes the evolution of the asymptotic theory of goodness-of-fit tests. We emphasize the parallel development of this theory and the theory of empirical and quantile processes. Our study includes the analysis of the main tests of fit based on the empirical distribution function, that is, tests of the Cramér-von Mises or Kolmogorov-Smirnov type. We pay special attention to the problem of testing fit to a location scale family. We provide a new approach, based on the Wasserstein distance, to correlation and regression tests, outlining some of their properties and explaining their limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, M.M. (1974). Stochastic ordering and kurtosis measure.Journal of the American Statistical Association.69, 543–545.

    Article  MATH  MathSciNet  Google Scholar 

  • Anderson, T.W. and D.A. Darling (1952). Asymptotic theory of certain “goodness of fit” criteria based on stochastic processes.Annals of Mathematical Statistics,23, 193–212.

    MathSciNet  MATH  Google Scholar 

  • Araujo, A. and E. Giné (1980).The Central Limit Theorem for Real and Banach Valued Random Variables. Wiley, New York.

    MATH  Google Scholar 

  • Balanda, K.P. and H.L. McGillivray (1988). Kurtosis: A critical review.American Statistician,42, 111–119.

    Article  Google Scholar 

  • Bickel, P. and D. Freedman (1981). Some asymptotic theory for the bootstrap.Annals of Statistics,9, 1196–1217.

    MATH  MathSciNet  Google Scholar 

  • Bickel, P. and W.R. van Zwet (1978). Asymptotic expansions for the power of distribution free tests in the two-sample problem.Annals of Statistics,6, 937–1004.

    MATH  MathSciNet  Google Scholar 

  • Billingsley, P. (1968).Convergence of Probability Measures. Wiley, New York.

    MATH  Google Scholar 

  • Breiman, L. (1968).Probability. Addison-Wesley, Reading.

  • Brown, B. and T. Hettmansperger (1996). Normal scores, normal plots, and test for normality.Journal of the American Statistical Society,91, 1668–1675.

    MATH  MathSciNet  Google Scholar 

  • Burke, M.D., M. Csörgö, S. Csörgö and P. Révész (1979). Approximations of the empirical process when parameters are estimated.Annals of Probability,7, 790–810.

    MATH  MathSciNet  Google Scholar 

  • Chernoff, H. and E.L. Lehmann (1954). The use of maximum likelihood estimates in χ2 tests of goodnes of fit.Annals of Mathematical Statistics,25, 579–586.

    MathSciNet  MATH  Google Scholar 

  • Chibisov, D.M. (1964). Some theorems on the limiting behavior of empirical distribution functions.Selected Translations in Mathematical Statistics and Probability, American Mathematical Society, Providence,6, 147–156.

    Google Scholar 

  • Cochran, W.G. (1952). The χ2 test of goodness of fit.Annals of Mathematical Statistics,23, 315–345.

    MathSciNet  MATH  Google Scholar 

  • Cohen, A. and H.B. Sackrowitz (1975). Unbiasedness of the chi-square, likelihood ratio and other goodness of fit tests for the equal cell case.Anals of Statistics,3, 959–964.

    MATH  MathSciNet  Google Scholar 

  • Cramér, H. (1928). On the composition of elementary errors. Second paper: Statistical applications.Skand. Aktuartidskr. 11, 141–180.

    Google Scholar 

  • Csörgő, S. (1981a). Limit behaviour of the empirical characteristic function.Annals of Probability,9, 130–144.

    MathSciNet  Google Scholar 

  • Csörgő, S. (1981b). The empirical characteristic process when parameters are estimated. In:Contributions to Probability (Eugene Lukacs Festschrift; J. Gani and V.K. Rohatgi, eds.), pp. 215–230. Academic Press, New York.

    Google Scholar 

  • Csörgő, M. (1983).Quantile Processes with Statistical Applications. SIAM.

  • Csörgő, S. (1986a). Testing for normality in arbitrary dimension.Annals of Statistics,14, 708–723.

    MathSciNet  Google Scholar 

  • Csörgő, S. (1986b). Testing for stability. In:Colloquia Mathematica Societatis János Bolyai, 45. Goodness of Fit (P. Révész, K., Sarkadi and P.K. Sen, eds.), pp. 101–132. North-Holland, Amsterdam.

    Google Scholar 

  • Csörgő, S. (1989). Consistency of some tests for multivariate normality.Metrika,36, 107–116.

    MathSciNet  Google Scholar 

  • Csörgő, S. and J.J. Faraway (1996). The exact and asymptotic distributions of Cramér-von Mises statistics.Journal of the Royal Statistical Society, B,58, 221–234.

    Google Scholar 

  • Csörgő, M. and L. Horváth (1993).Weighted Approximations in Probability and Statistics. Wiley, New York.

    Google Scholar 

  • Csörgő, M., L. Horváth and Q.-M. Shao (1993). Convergence of integrals of uniform empirical and quantile processes.Stochastic Processes and their Applications,45, 283–294.

    Article  MathSciNet  Google Scholar 

  • Csörgő, M. and P. Révész (1978). Strong approximations of the quantile process.Annals of Statistics,6, 882–894.

    MathSciNet  MATH  Google Scholar 

  • Cuesta-Albertos, J.A., C. Matrán, S.T. Rachev and L. Rüschendorf (1996). Mass transportation problems in Probability Theory.The Mathematical Scientist,21, 34–72.

    MATH  MathSciNet  Google Scholar 

  • D'Agostino, R.B. (1971). An omnibus test of normality for moderate and large sample sizes.Biometrika,58, 341–348.

    Article  MATH  MathSciNet  Google Scholar 

  • Darling, D.A. (1955). The Cramér-Smirnov test in the parametric case.Annals of Mathematical Statistics,26, 1–20.

    MathSciNet  MATH  Google Scholar 

  • David, F.N. and N.L. Johnson (1948). The probability integral transformation when parameters are estimated from the sample.Biometrika,35, 182–190.

    MATH  MathSciNet  Google Scholar 

  • David, H.A., H.O. Hartley and E.S. Pearson (1954). The distribution of the ratio, in a single normal sample, of range to standard deviation.Biometrika,41, 482–493.

    MATH  MathSciNet  Google Scholar 

  • del Barrio, E. (2000). Asymptotic distribution of statistics of Cramér-von Mises type.Preprint.

  • del Barrio, E., J.A. Cuesta-Albertos, C. Matrán and J. Rodríguez-Rodríguez (1999). Tests of goodness of fit based on the L2-Wasserstein distance.Annals of Statistics,27, 1230–1239.

    Article  MATH  MathSciNet  Google Scholar 

  • de Wet, T. and J. Venter (1972). Asymptotic distributions of certain test criteria of normality.South African Statistics Journal,6, 135–149.

    Google Scholar 

  • de Wet, T. and J. Venter (1973). Asymptotic distributions for quadratic forms with applications to test of fit.Annals of Statistics,2, 380–387.

    Google Scholar 

  • Donsker, M.D. (1951). An invariance principle for certain probability limit theorems.Memoirs of the American Mathematical Society,6.

  • Donsker, M.D. (1952). Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems.Annals of Mathematical Statistics,23, 277–281.

    MathSciNet  MATH  Google Scholar 

  • Doob, J.L. (1949). Heuristic approach to the Kolmogorov-Smirnov theorems.Annals of Mathematical Statistics,20, 393–403.

    MathSciNet  MATH  Google Scholar 

  • Downton, F. (1966). Linear estimates with polynomial coefficients.Biometrika,53, 129–141.

    MATH  MathSciNet  Google Scholar 

  • Dudley, R.M. (1978). Central limit theorems for empirical measures.Annals of Probability,6, 899–929.

    MATH  MathSciNet  Google Scholar 

  • Durbin, J. (1973). Weak convergence of the sample distribution function when parameters are estimated.Annals of Statistics,1, 279–290.

    MATH  MathSciNet  Google Scholar 

  • Epps, T.W. and L.B. Pulley (1983). A test for normality based on the empirical characteristic function.Biometrika,70, 723–726.

    Article  MATH  MathSciNet  Google Scholar 

  • Feller, W. (1948). On the Kolmogorov-Smirnov limit theorems for empirical distributions.Annals of Mathematical Statistics,19, 177–189.

    MathSciNet  MATH  Google Scholar 

  • Feuerverger, A. and R.A. Mureika (1977). The empirical characteristic function and its applications.Annals of Statistics,5, 88–97.

    MATH  MathSciNet  Google Scholar 

  • Filliben, J.J. (1975). The probability plot correlation coefficient test for normality.Technometrics,17, 111–117.

    Article  MATH  Google Scholar 

  • Fisher, R.A. (1930). The moments of the distribution for normal samples of measures of departure from normality.Proceedings of the Royal Society, A,130, 16.

    Google Scholar 

  • Galambos, J. (1987)The Asymptotic Theory of Extreme Order Statistics, second edition. Krieger, Melbourne, Florida.

    MATH  Google Scholar 

  • Geary, R.C. (1947). Testing for normality.Biometroka,34, 209–242.

    MATH  MathSciNet  Google Scholar 

  • Gerlach, B. (1979). A consistent correlation-type goodness-of-fit test; with application of the two parameter Weibull distribution.Mathematische Operations-forschung und Statistik Series Statistics,10, 427–452.

    MATH  MathSciNet  Google Scholar 

  • Gumbel, E.J. (1943). On the reliability of the classical chi-square test.Annals of Mathematical Statistics,14, 253–263.

    MathSciNet  MATH  Google Scholar 

  • Gupta, A.K. (1952). Estimation of the mean and the standard deviation of a normal population from a censored sample.Biometrika,39, 260–273.

    MATH  MathSciNet  Google Scholar 

  • Hall, P. and A.H. Welsh (1983). A test for normality based on the empirical characteristic function.Biometrika,70, 485–489.

    Article  MATH  MathSciNet  Google Scholar 

  • Kac, M., J. Kiefer, and J. Wolfowitz (1955). On tests of normality and other tests of goodness of fit based on distance methods.Annals of Mathematical Statistics,26, 189–211.

    MathSciNet  MATH  Google Scholar 

  • Kale, B.K. and G. Sebastian (1996). On a class of symmetric nonnormal distributions with kurtosis of three. InStatistical Theory and Applications: Papers in Honor of Herbert A. David. (H.H. Nagaraja, P.K. Sen and D. Morrison, eds.) Springer Verlag, New York.

    Google Scholar 

  • Kolmogorov, A. N. (1933). Sulla determinazione empirica di una legge di distribuzione.Giornale del Istituto Italiano degli Attuari,4, 83–91.

    MATH  Google Scholar 

  • Kolmogorov, A.N. and Y.V. Prohorov (1949). On sums of a random number of random terms.Uspekhi Matematicheskikh Nauk, Rossijskaya Akademiya Nauk, Moscow (in Russian),4, 168–172.

    Google Scholar 

  • Komlós, J., P. Major and G. Tusnády (1975). An approximation of partial sums of independent RV's and the sample DF. Part I.Zeitschrift fWahrscheinlichkeitstheorie und Verwandte Gebiete,32, 111–131.

    Article  MATH  Google Scholar 

  • Komlós, J., P. Major and G. Tusnády (1976). An approximation of partial sums of independent RV's and the sample DF. Part II.Zeitschrift fWahrscheinlichkeitstheorie und Verwandte Gebiete,34, 33–58.

    Article  MATH  Google Scholar 

  • Koutrouvelis, I.A. and S.G. Meintanis (1999). Testing for stability based on the empirical characteristic function with applications to financial data.Journal of Statistical Computation and Simulation,64, 275–300.

    MATH  Google Scholar 

  • LaRiccia, V. and D.M. Mason (1986). Cramér-von Mises statistics based on the sample quantile function and estimated parameters.Journal of Multivariate Analysis,18, 93–106.

    Article  MATH  MathSciNet  Google Scholar 

  • Leslie, J.R. (1984). Asymptotic properties and new approximations for both the covariance matrix of normal order statistics and its inverse.Colloquia Mathematica Societatis János Bolyai,45, 317–354. (P. Révész, K. Sarkadi and P.K. Sen. eds.) Elsevier, Amsterdam.

    Google Scholar 

  • Leslie, J.R., M.A. Stephens and S. Fotopoulos (1986). Asymptotic distribution of the Shapiro-WilkW for testing for normality.Annals of Statistics,14, 1497–1506.

    MATH  MathSciNet  Google Scholar 

  • Lilliefors, H.W. (1967). On the Kolmogorof-Smirnov test for normality with mean and variance unknown.Journal of the American Statistical Association,62, 399–402.

    Article  Google Scholar 

  • Lockhart, R.A. (1985). The asymptotic distribution of the correlation coefficient in testing fit to the exponential distribution.Canadian Journal of Statistics,13, 253–256.

    MATH  MathSciNet  Google Scholar 

  • Lockhart, R. A. (1991). Overweight tails are inefficient.Annals of Statistics,19, 2254–2258.

    MATH  MathSciNet  Google Scholar 

  • Lockhart, R.A. and M.A. Stephens (1998). The probability plot: Test of fit based on the correlation coefficient. InOrder statistics: applications Handbook of Statistics,17, 453–473. North-Holland, Amsterdam.

    Google Scholar 

  • Mann, H.B. and A. Wald (1942). On the choice of the number of class intervals in the application of the chi square test.Annals of Mathematical Statistics,13, 306–317.

    MathSciNet  MATH  Google Scholar 

  • McLaren, C.G. and R.A. Lockhart (1987). On the asymptotic efficiency of certain correlation tests of fit.Canadian Journal of Statistics,15, 159–167.

    MATH  MathSciNet  Google Scholar 

  • Moore, D.S. (1971). A chi-square statistic with random cell boundaries.Annals of Mathematical Statistics,42, 147–156.

    MATH  MathSciNet  Google Scholar 

  • Moore, D.S. (1986). Tests of chi-squared type. InGoodness-of-Fit Techniques (R.B. d'Agostino and M.A. Stephens, eds.) North-Holland, Amsterdam. 63–96.

    Google Scholar 

  • Murota, K. and K. Takeuchi (1981). The studentized empirical characteristic function and its application to test for the shape of distribution.Biometrika,68, 55–65.

    Article  MATH  MathSciNet  Google Scholar 

  • O'Reilly, N.E. (1974). On the weak convergence of empirical processes in supnorm metrics.Annals of Probability,2, 642–651.

    MATH  MathSciNet  Google Scholar 

  • Pearson, E.S. (1930). A further development of test for normality.Biometrika,22, 239–249.

    MATH  Google Scholar 

  • Pearson, E.S., R.B. D'Agostino and K.O. Bowman (1977). Tests for departure from normality: Comparison of powers.Biometrika,64, 231–46.

    Article  MATH  Google Scholar 

  • Pollard, D. (1979). General chi-square goodness-of-fit tests with data-dependent cells.Zeitschrift fWahrscheinlichkeitstheorie und Verwandte Gebiete,50, 317–331.

    Article  MATH  MathSciNet  Google Scholar 

  • Pollard, D. (1980). The minimum distance method of testing.Metrika,27,

  • Prohorov, Y.V. (1953). Probability distributions in functional spaces.Uspekhi Matematicheskikh Nauk, Rossijskaya Akademiya Nauk, Moscow (in Russian),8, 165–167.

    Google Scholar 

  • Prohorov, Y.V. (1956). The convergence of random processes and limit theorems in probability.Theory of Probability and its Applications,1, 157–214.

    Article  MathSciNet  Google Scholar 

  • Rachev, S.T. and L. Rüschendorf (1998).Mass transportation problems, 2 Vols. Springer, New York.

    MATH  Google Scholar 

  • Royston, J.P. (1982). An extension of Shapiro and Wilk'sW test for normality to large samples.Applied Statistics,31, 115–124.

    Article  MATH  Google Scholar 

  • Sarkadi, K. (1975). The consistency of the Shapiro-Francia test.Biometrika,62, 445–450.

    MATH  MathSciNet  Google Scholar 

  • Shapiro, S.S. and R.S. Francia (1972). An approximate analysis of variance test of normality.Journal of the American Statistical Association,67, 215–216.

    Article  Google Scholar 

  • Shapiro, S.S. and M.B. Wilk (1965). An analysis of variance test for normality (complete samples).Biometrika,52, 591–611.

    MATH  MathSciNet  Google Scholar 

  • Shapiro, S.S. and M.B. Wilk (1968). Approximations for the null distribution of the W statistic.Technometrics,10, 861–866.

    Article  MathSciNet  Google Scholar 

  • Shapiro, S.S., M.B. Wilk and H.J. Chen (1968). A comparative study of various tests for normality.Journal of the American Statistical Association,63, 1343–1372.

    Article  MathSciNet  Google Scholar 

  • Shorack, G.R. and J.A. Wellner (1986).Empirical Processes With Applications to Statistics. Wiley, New York.

    Google Scholar 

  • Skorohod, A.V. (1956). Limit theorems for stochastic processes.Theory of Probability and its Applications,1, 261–290.

    Article  MathSciNet  Google Scholar 

  • Smirnov, N.V. (1936). Sur la distribution de ω2 (Critérium de M.R. von Mises).Comptes Rendus de l'Académie des Sciences Paris,202, 449–452.

    MATH  Google Scholar 

  • Smirnov, N.V. (1937). Sur la distribution de ω2 (Critérium de M.R. von Mises).Matematicheskij Sbornik, Rossijskaya Akademiya Nauk, Moscow (in Russian with French summary),2, 973–993.

    Google Scholar 

  • Smirnov, N.V. (1939). Sur les écarts de la courbe de distribution empirique.Matematicheskij Sbornik, Rossijskaya Akademiya Nauk, Moscow (in Russian with French summary),6, 3–26.

    Google Scholar 

  • Smirnov, N.V. (1941). Approximate laws of distribution of random variables from empirical data.Uspekhi Matematicheskikh Nauk, Rossijskaya Akademiya Nauk, Moscow (in Russian),10, 179–206.

    Google Scholar 

  • Smith, R.M. and L.J. Bain (1976). Correlation-type goodness-of-fit statistics with censored sampling.Communications in Statistics-Theory and Methods,5, 119–132.

    MathSciNet  Google Scholar 

  • Spinelli, J.J. and M.A. Stephens (1987). Tests for exponentiality when origin and scale parameters are unknown.Technometrics,29, 471–476.

    Article  MathSciNet  Google Scholar 

  • Stephens, M.A. (1974). EDF statistics for goodness of fit and some comparisons.Journal of the American Statistical Association,69, 730–737.

    Article  Google Scholar 

  • Stephens, M.A. (1975). Asymptotic properties for covariance matrices of order statistics.Biometrika,62, 23–28.

    Article  MATH  MathSciNet  Google Scholar 

  • Stephens, M.A. (1986a). Tests based on EDF statistics. InGoodness-of-Fit Techniques (R.B. D'Agostino and M.A. Stephens, eds). Marcel Dekker, New York, 97–193.

    Google Scholar 

  • Stephens, M.A. (1986b). Tests based on regression and corelation. InGoodness-of-Fit Techniques (R.B. D'Agostino and M.A. Stephens, eds.) Marcel Dekker, New York. 195–233.

    Google Scholar 

  • Sukhatme, S. (1972). Fredholm determinant of a positive definite kernel of a special type and its application.Annals of Mathematical Statistics,43, 1914–1926.

    MathSciNet  MATH  Google Scholar 

  • Uthoff, V.A. (1970). An optimum test property of two well known statistics.Journal of the American Statistical Association,65, 1597.

    Article  MATH  MathSciNet  Google Scholar 

  • Uthoff, V.A. (1973). The most powerful scale and location invariant test of the normal versus the double exponential.Annals of Statistics,1, 170–174.

    MATH  MathSciNet  Google Scholar 

  • Vallender, S. (1973). Calculation of the Wasserstein distance between probability distributions on the line.Theory of Probability Applications,18, 785–786.

    Google Scholar 

  • Verrill, S. and R. Johnson (1987). The asymptotic equivalence of some modified Shapiro-Wilk statistics-Complete and censored sample cases.Annals of Statistics,15, 413–419.

    MATH  MathSciNet  Google Scholar 

  • von Mises, R. (1931).Wahrscheinlichkeitsrechnung. Wein, Leipzig.

    Google Scholar 

  • Watson, G.S. (1957). The X2 goodness-of-fit test for normal distributions.Biometrika,44, 336–348.

    MATH  MathSciNet  Google Scholar 

  • Watson, G.S. (1958). On chi-square goodness-of-fit tests for continuous distributions.Journal of the Royal Statistical Society, B,20, 44–61.

    MATH  Google Scholar 

  • Weisberg, S. and C. Bingham (1975). An approximate analysis of variance test for non-normality suitable for machine calculation.Technometrics,17, 133–134.

    Article  MATH  Google Scholar 

  • Williams, P. (1935). Note on the sampling distribution of\(\sqrt {\beta _1 } \), where the population is normal.Biometrika,27, 269–271.

    Google Scholar 

References

  • Götze, F. (1979). Asymptotic expansions for bivariate von Mises functionals.Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete,50, 333–355.

    Article  MATH  Google Scholar 

  • Hilbert, D. (1902). Mathematical problems.Bulletin of the American Mathematical Society, Ser. 2,8, 437–479.

    Article  MathSciNet  Google Scholar 

  • Kallenberg, W.C.M. and T. Ledwina (1997). Data-driven smooth tests when the hypothesis is composite.Journal of the American Statistical Association,92, 1094–1104.

    Article  MATH  MathSciNet  Google Scholar 

References

  • Cuadras, C.M. (1996). A distribution with given marginals and given regression curve. InDistributions with Fixed Marginals and Related Topics. IMS Lecture Notes-Monograph Series,28, pp. 76–83 (L. Rüschendorf, B. Schweizer and M.D. Taylor, eds.) Hayward, California.

    Google Scholar 

  • Cuadras, C.M. and J. Fortiana (1993). Continuous metric scaling and prediction. InMultivariate Analysis, Future Directions 2, pp. 47–66 (C.M. Cuadras and C.R. Rao eds.) Elsevier Science Publishers B.V., North-Holland, Amsterdam.

    Google Scholar 

  • Cuadras, C.M. and J. Fortiana (1994). Ascertaining the underlying distribution of a data set. InSelected Topics on Stochastic Modelling, pp. 223–230 (R. Gutierrez and M.J. Valderrama eds.) World-Scientific, Singapore.

    Google Scholar 

  • Cuadras, C.M. and J. Fortiana (1995). A continuous metric scaling solution for a random variable.Journal of Multivariate Analysis,52, 1–14.

    Article  MATH  MathSciNet  Google Scholar 

  • Cuadras, C.M. and J. Fortiana (2000). The importance of geometry in multivariate analysis and some applications. InStatistics for the 21st Century, pp. 93–108 (C.R. Rao and G. Szekely, eds.) Marcel Dekker, New York.

    Google Scholar 

  • Cuadras, C.M. and Y. Lahlou (2000). Some orthogonal expansions for the logistic distribution.Communications in Statistics-Theory and Methods, to appear.

  • Cuesta-Albertos, J.A., C. Matrán-Bea and A. Tuero-Diaz (1996). On lower bounds for theL 2-Wasserstein metric in a Hilbert space.Journal of Theoretical Probability,9, 263–283.

    Article  MATH  MathSciNet  Google Scholar 

  • Fortiana, J. and A. Grané (2000). A scale-free goodness-of-fit statistic for the exponential distribution based on maximum correlations. Submitted.

  • Liu, Z. (1991). Bootstrapping one way analysis of Rao's quadratic entropy.Communications in Statistics-Theory and Methods,20, 1683–1703.

    MATH  MathSciNet  Google Scholar 

  • Rao, C.R. (1982). Diversity: its measurement, decomposition, approtionment and analysis.Shankhya, A,44, 1–21.

    MATH  Google Scholar 

  • Shorack, G.R. and J.A. Wellner (1986).Empirical Processes with Applications to Statistics. Wiley, new York.

    Google Scholar 

References

  • Anderson, T.W. and M.A. Stephens (1993). The modified Cramér-von Mises goodness-of-fit criterion for time series.Sankhya, A,55, 357–369.

    MATH  MathSciNet  Google Scholar 

  • Chernoff, H., J.L. Gastwirth and M.V. Johns (1967). Asymptotic distribution of linear combinations of functions of order statistics with application to estimation.Annals of Mathematical Statistics,38, 52–53.

    MathSciNet  MATH  Google Scholar 

  • de Wet, T. and J.H. Venter (1973). A goodness-of-fit test for a scale parameter family of distributions.South African Statistical Journal,7, 35–46.

    MathSciNet  Google Scholar 

  • de Wet, T., J.H. Venter and J.W.J. van Wyk (1979). The null distributions of some test criteria of multivariate normality.South African Statistical Journal,13, 153–176.

    MATH  MathSciNet  Google Scholar 

  • de Wet, T. (1980). Cramér-von Mises tests for independence.Journal of Multivariate Analysis,10, 38–50.

    Article  MATH  MathSciNet  Google Scholar 

  • de Wet, T. (1999). Goodness-of-fit tests based on a weighted Wasserstein distance. I) Scale parameter family. II) Location parameter family. Unpublished Manuscript.

References

  • Andersen, L., E. Giné, M. Ossiander and J. Zinn (1988). The central limit theorem and the law of iterated logarithm under local conditions.Probability Theory and Related Fields,77, 271–301.

    MATH  MathSciNet  Google Scholar 

  • Cabaña, A. and E.M. Cabaña (1997). Transformed empirical processes and modified Kolmogorov-Smirnov tests for multivariate distributions.Annals of Statistics,25, 2388–2409.

    Article  MATH  MathSciNet  Google Scholar 

  • Cabaña, A. and E.M. Cabaña (2000). Consistent and focused goodness of fit for families of distribution functions.Program, Abstracts and Directory, BS/IMS Congress, CIMAT, Guanajuato, Mexico. Abstract 44, pp. 56.

  • Csörgö, M. and L. Horváth (1986). Approximation of weighted empirical and quantile processes.Statistics and Probability Letters,4, 275–280.

    Article  MATH  MathSciNet  Google Scholar 

  • del Barrio, E., E. Giné and C. Matrán (1999). Central limit theorems for the Wasserstein distance between the empirical and the true distributions.Annals of Probability,27, 1009–1071.

    Article  MATH  MathSciNet  Google Scholar 

  • del Barrio, E. and C. Matrán (2000). An elementary derivation of the asymptotic distribution of Shapiro-Wilk type statistics.Program, Abstracts and Directory, BS/IMS Congress, CIMAT, Guanajuato, Mexico. Abstract 76, pp. 63.

  • Mason, D. (1991). A note on weighted approximations to the uniform empirical and quantile processes. InSums, Trimmed Sums and Extremes, pp. 269–283. Birkhäuser.

  • Varadhan, S.R.S. (1962). Limit theorems for sums of independent random variables with values in a Hilbert space,Sankhya,24, 213–238.

    MATH  MathSciNet  Google Scholar 

References

  • Baringhaus, L. and N. Henze (1992). A goodness of fit test for the Poisson distribution based on the empirical generating function.Statistics and Probability Letters,13, 269–274.

    Article  MATH  MathSciNet  Google Scholar 

  • Stephens, M.A. (1974). EDF statistics for goodness of fit and some comparisons.Journal of the American Statistical Association,69, 730–737.

    Article  Google Scholar 

  • Stephens, M.A. (1976). Asymptotic results for goodness-of-fit statistics with unknown parameters.Annals of Statistics,4, 357–369.

    MATH  MathSciNet  Google Scholar 

References

  • Berger, J.O. (1985).Statistical Decision Theory and Bayesian Analysis, 2nd. ed. Springer Verlag.

  • Berger, J.O. and T. Sellke (1987). Testing a point null hypothesis: the irreconcilability ofp-values and evidence.Journal of the American Statistical Association,82, 112–122.

    Article  MATH  MathSciNet  Google Scholar 

  • Czado, C. and A. Munk (2000). Noncanonical links in generalized linear models —when is the effort justified?Journal of Statistical Planning and Inference, to appear.

  • Dette, H. and A. Munk (1998). Validation of linear regression models.Annals of Statistics,26, 778–800.

    Article  MATH  MathSciNet  Google Scholar 

  • Eubank, R.L. and V.N. LaRiccia (1992). Asymptotic comparison of Cramer-von Mises and nonparametric function estimation techniques for testing goodness-of-fit.Annals of Statistics,20, 2071–2086.

    MATH  MathSciNet  Google Scholar 

  • Gregory, G.G. (1980). On efficiency and optimality of quadratic tests.Annals of Statistics,8, 116–131.

    MATH  MathSciNet  Google Scholar 

  • Kallenberg, W.C.M. and T. Ledwina (1997). Data-driven smooth tests when the hypothesis is composite.Journal of the American Statistical Association,92, 1094–1104.

    Article  MATH  MathSciNet  Google Scholar 

  • Milbrodt, H. and H. Strasser (1990). On the asymptotic power of the two-sided Kolmogorov-Smirnov test.Journal of Statistical Planning and Infernece,26, 1–23.

    Article  MATH  MathSciNet  Google Scholar 

  • Munk, A. and C. Czado (1998). Nonparametric validation of similar distributions and the assessment of goodness of fit.Journal of the Royal Statistical Society, B,60, 223–241.

    Article  MATH  MathSciNet  Google Scholar 

  • Munk, A. (1999). Testing the lack of fit in nonlinear regression models with random Toeplitz-forms.Scandinavian Journal of Statistics, under revision.

  • Munk, A., M. Vogt and G. Freitag (2000). Assessing structural relationships between distributions-a quantile process approach. In preparation.

  • Neuhaus, G. (1976). Asymptotic power properties of the Cramer-von Mises test under contiguous alternatives.Journal of Multivariate Analysis,6, 95–110.

    Article  MathSciNet  MATH  Google Scholar 

References

  • Gaenssler, P. and W. Stute (1979). Empirical processes: a survey of results for independent and identically distributed random variables.Annals of Probability,7, 193–243.

    MATH  MathSciNet  Google Scholar 

  • Gaenssler, P. and W. Stute (1987).Seminar on Empirical Processes. Birkhaeuser, Basel.

    MATH  Google Scholar 

  • Khmaladze, E. (1981). Martingale approach in the theory of goodness-of-fit tests.Theory of Probability and its Applications,26, 240–257.

    Article  MathSciNet  Google Scholar 

  • Stute, W. (1997). Model checks in statistics: an innovation process approach.IMS Lecture Notes,31, 373–383. Hayward.

    MathSciNet  Google Scholar 

  • Stute, W., W. González Manteiga and M.P. Quindimil (1993). Bootstrap based goodness-of-fit tests.Metrika,40, 243–256.

    MATH  MathSciNet  Google Scholar 

References

  • del Barrio, E., E. Giné and C. Matrán (1999). Central limit theorems for the Wasserstein distance between the empirical and the true distributions.Annals of Probability,27, 1009–1071.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Miguel Martín Díaz whose scientific criticism has greatly inspirated our research by years.

Research partially supported by DGICYT, grants PB98-0369-C02-01 and 02. E. del barrio and C. Matrán have also been supproted by PAPIJCL grant VA08/97.

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Barrio, E., Cuesta-Albertos, J.A., Matrán, C. et al. Contributions of empirical and quantile processes to the asymptotic theory of goodness-of-fit tests. Test 9, 1–96 (2000). https://doi.org/10.1007/BF02595852

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595852

Key words

AMS subject classification

Navigation