Skip to main content
Log in

On intrinsic priors for nonnested models

  • Published:
Test Aims and scope Submit manuscript

Abstract

Model selection problems involving nonnested models are considered. Bayes factor based solution to these problems needs prior distributions for the parameters in the alternative models. When the prior information on these parameters is vague default priors are available but, unfortunately, these priors are usually imporper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. Intrinsic priors have been introduced for solving this difficulty. While these priors are well established for nested models, their construction for nonnested models is still an open problem.

In this latter setting this paper studies the system of functional equations that defines the intrinsic priors. It is shown that the solutions to these equations are obtained from the solutions to a single homogeneous linear functional equation. The Bayes factors associated with these solutions are analyzed. Some illustrative examples are provided and, in particular, location, scale, and location-scale models are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berger, J. O. andDelampady, M. (1987). Testing precise hypotheses.Statistical Science, 3:317–352.

    MathSciNet  Google Scholar 

  • Berger, J. O. andPericchi, L. R. (1996). The intrinsic Bayes factor for model selection and prediction.Journal of the American Statistical Association, 91:109–122.

    Article  MATH  MathSciNet  Google Scholar 

  • Berger, J. O. andSellke, T. (1987). Testing a point null hypothesis: the irreconcilability ofp-values and evidence.Journal of the American Statistical Association, 82:112–122.

    Article  MATH  MathSciNet  Google Scholar 

  • Cox, D. R. (1985). Test of separate families of hypotheses. InFourth Berkeley Symposium, vol. 1, pp. 105–123.

  • Dmochowsky, J. (1994). Intrinsic priors via Kullback-Leiber geometry. In J. M. Bernardo, J. O. Berger, P. Dawid, and A. F. M. Smith, eds.Bayesian Statistics, vol. 5, pp. 543–549. Oxford University Press.

  • Edwards, L., W., H. andSavage, L. J. (1963). Bayesian statistical inference for psychological research.Psychological Review, 70:193–242.

    Article  Google Scholar 

  • Girón, F. J., Martínez, M. L. andMoreno, E. (2003). Bayesian analysis of mafched pairs.Psychological Review, 113:49–66.

    MATH  Google Scholar 

  • Huber, P. (1967). The behavior of maximum likelihood estimators under nonstandard conditions. InFourth Berkeley Symposium, vol. 1, pp. 221–233.

  • Jeffreys, H. (1961).Theory of Probability. Oxford University Press, London.

    MATH  Google Scholar 

  • Kass, R. E. andRaftery, A. (1995). Bayes factors.Journal of the American Statistical Association, 90:773–795.

    Article  MATH  Google Scholar 

  • Kass, R. E. andWasserman, L. (1995). A reference Bayesian test for nested hypotheses and its relationship to the schwarz criterion.Journal of the American Statistical Association, 90:928–934.

    Article  MATH  MathSciNet  Google Scholar 

  • Kuczma, M., Choczewski, B., andGer, R. (1990).Iterative functional equations. Cambridge University Press.

  • Moreno, E. (1997). Bayes facor for intrinsic and fractional priors in nested models: Bayesian robustness. In D. Yadolah and C. Hayward, eds.,L1-Statistical Procedures and Related Topics, vol. 29, pp. 257–270. Institute of Mathematical Statistics.

  • Moreno, E., Bertolino, F., andRacugno, W. (1998). An intrinsic limiting procedure for model selection and hypotheses testing.Journal of the American Statistical Association, 93:1451–1460

    Article  MATH  MathSciNet  Google Scholar 

  • Moreno, E., Bertolino, F. andRacugno, W. (1999). Default Bayesian analysis of the Behrens-Fisher problems.Journal of Statistical Planning and Inference, 81:323–333.

    Article  MATH  MathSciNet  Google Scholar 

  • Moreno, E., Bertolino, F. andRacugno, W. (2000). Bayesian model selection approach to analysis of variance under heteroscedasticity.The Statistician, 49:503–517.

    Google Scholar 

  • Moreno, E. andCano, J. A. (1989). Testing a point null hypothesis: Asymptotic robust Bayesian analysis with respects to the priors given in a subsigma field.International Statistical Review, 57:221–232.

    Article  MATH  Google Scholar 

  • Moreno, E. andLiseo, B. (2003). Default priors for testing the number of components of a mixture.Journal of Statistical Planning and Inference, 111:129–142.

    Article  MATH  MathSciNet  Google Scholar 

  • Moreno, E., Torres, F., andCasella, G. (2002). Testing equality of regression coefficients in heteroscedastic normal regression models. Tech. rep., Department of Statistics University of Granada.

  • O'Hagan, A. (1994).Kendall's advanced theory of statistics, vol. 2B ofKendall's Library of Statistics. Edward Arnold, London.

    Google Scholar 

  • O'Hagan, A. (1995). Fractional Bayes factor for model comparison (with discussion).Journal of the Royal Statistical Society, 57:99–138.

    MATH  MathSciNet  Google Scholar 

  • Shen, X. andWasserman, L. (2001). Rates of convergence of posterior distributions.Annals of Statistics, 29:689–714.

    MathSciNet  Google Scholar 

  • Spiegelhalter, D. J. andSmith, A. F. M. (1982). Bayes factor for linear and log-linear models with vague prior information.Journal of the Royal Statistical Society, 44:377–387.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Kessler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cano, J.A., Kessler, M. & Moreno, E. On intrinsic priors for nonnested models. Test 13, 445–463 (2004). https://doi.org/10.1007/BF02595781

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595781

Key Words

AMS subject classification

Navigation