Skip to main content
Log in

Functional nonparametric model for time series: a fractal approach for dimension reduction

  • Published:
Test Aims and scope Submit manuscript

Abstrac

In this paper we propose a functional nonparametric model for time series prediction. The originality of this model consists in using as predictor a continuous set of past values. This time series problem is presented in the general framework of regression estimation from dependent samples with regressor valued in some infinite dimensional semi-normed vectorial space. The curse of dimensionality induced by our approach is overridden by means of fractal dimension considerations. We give asymptotics for a kernel type nonparametric predictor linking the rates of convergence with the fractal dimension of the functional process. Finally, our method has been implemented and applied to some electricity consumption data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bosq, D. (1998).Nonparametric Statistics for Stochastic Processes.Estimation and Prediction, vol. 110 ofLecture Notes in Statitics. Springer-Verlag, New York, 2nd ed.

    MATH  Google Scholar 

  • Bosq, D. (2000).Linear Processes in Function Spaces.Theory and Applications, vol. 149 ofLecture Notes in Statitics, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Cardot, H., Ferraty, F., A., M., andSarda, P. (2002). Testing hypotheses in the functional linear model.To appear in Scandinavian Journal of Statistics.

  • Cardot, H., Ferraty, F., andSarda, P. (1999). Functional linear model.Statistics and Probability Letters, 45:11–22.

    Article  MATH  MathSciNet  Google Scholar 

  • Cardot, H., Ferraty, F., andSarda, P. (2000). Étude asymptotique d’un estimateur spline hybride pour le modèle linéaire fonctionnel.Comptes Rendus de l’Académie des Sciences, Série I. Mathématique, 330(6):501–504.

    Article  MATH  MathSciNet  Google Scholar 

  • Cuevas, A., Febrero, M., andFraiman, R. (2002). Linear functional regression: the case of fixed design and functional response.canadian Journal of Statistics, 30(2):285–300.

    MATH  MathSciNet  Google Scholar 

  • Dauxois, J., Pousse, A., andRomain, Y. (1982). Asymptotic theory for the principal component analysis of a random vector function: some applications to statisitical inference.Journal of Multivariate Analysis, 12:136–154.

    Article  MATH  MathSciNet  Google Scholar 

  • Doukhan, P. (1994).Mixing.Properties and Examples, vol. 85 ofLecture Notes in Statitics. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Ferraty, F. andVieu, P. (2000). Dimension fractale et es timation de la régression dans des espaces vectorieles semi-normés.Comptes Rendus de l’Académie des Sciences de Paris, t. 330, Série I:403–406.

    MathSciNet  Google Scholar 

  • Ferraty, F. andVieu, P. (2002). The functional nonparametric model and application to spectrometric data.To appear in Computational Statistics.

  • Hastie, T. andMallows, C. (1993). A discussion of “A statistical view of some chemometrics regression tools” by I.E. Frank and J.H. Friedman.Technometrics, 35:140–143.

    Article  Google Scholar 

  • Hoerl, A. E. andKennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems.Technometrics, 8:27–51.

    Google Scholar 

  • Massy, W. F. (1965). Principal components regression in exploratory statistical research.Journal of the American Statistical Association, 60:234–246.

    Article  Google Scholar 

  • Pesin, Y. B. (1993). On rigourous mathematical definitions of correlation dimension and generalized spectrum for dimensions.Journal Statistical Physic, 71:529–547.

    Article  MATH  MathSciNet  Google Scholar 

  • Ramsay, J. andSilverman, B. (1997).Functional Data Analysis. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Rio, E. (1999). Théorie asymptotique des processus faiblements dépendents. InMathématiques and Applications, vol. 31 Springer-SMAI, New York.

    Google Scholar 

  • Sarda, P. andVieu, P. (2000).Kernel Regression, pp. 43–70. Wiley, New York.

    Google Scholar 

  • Staph (2001a). Statistique fonctionnelle: résumés des exposés 1999–2000. Technical report, Laboratoire de Statistique et Probabilités de Toulouse, Université Paul Sabatier.

  • Staph (2001b). Statistique fonctionnelle: résumés des exposés 2000–2001. Technical report, Laboratoire de Statistique et Probabilités de Toulouse, Université Paul Sabatier.

  • Stone, C. (1980). Optimal rates of convergence for nonparametric estimates.Annals of Statistics, 8:1348–1360.

    MATH  MathSciNet  Google Scholar 

  • Stone, C. (1982). Optimal global rates of convergence for nonparametric regression.Annals of Statistics, 10:1040–1053.

    MATH  MathSciNet  Google Scholar 

  • Wold, H. (1975). Soft modeling by latent variables; the non-linear iterative partial least squares approach. In J. Gani, ed.,Perspectives in Probability and Statistics, Papers in Honour of M. S. Barlett. Academic Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Ferraty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferraty, F., Goia, A. & Vieu, P. Functional nonparametric model for time series: a fractal approach for dimension reduction. Test 11, 317–344 (2002). https://doi.org/10.1007/BF02595710

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02595710

Key Words

AMS subject classification

Navigation