Skip to main content
Log in

Percutaneous recanalization of arteries: Status and prospects of laser angioplasty with modified fibre tips

  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Percutaneous balloon dilatation of arterial stenoses is a firmly established non-surgical treatment of ischaemic disease. The number of percutaneous transluminal coronary angioplasties performed per year in the USA approaches the number of coronary artery bypass graft operations. A great number of novel percutaneous recanalization schemes address the major problems of balloon angioplasty: failure to cross the stenosis (occlusion), failure to dilate effectively (15–20%), acute complications (5%) and re-stenosis within six months (30–40%). Laser energy can effectively evaporate atheromatous plaque, but delivery by an unmodified bare fibre creates only a small channel and carries a high risk of vessel-wall perforation in the coronary arteries. It appears impossible to maintain an axial position in small, tortuous and moving arteries with multiple side-branches. Coronary lesions are anatomically and structurally heterogeneous. Reduction of the perforation risk is being approached by four strategies: (a) optimization of the power source; (b) enhancement of laser-light absorption by plaque relative to artery wall; (c) improvement of plaque recognition; and (d) modification of the delivery system, which is discussed in detail. Recanalization of occluded femoropopliteal arteries with the 2.0-mm metal laser probe has proved to be safe and effective in more than 100 patients. The 2.2-mm rounded sapphire contact probe has been used with success in the peripheral arteries of over 30 patients. The recanalization mechanism of both probes is not yet fully understood. Closed-chest attempts at recanalization of coronary arteries by the 1.7-mm metal laser probe have been reported in 13 patients, with success in the majority. There were no complications requiring emergency surgery. The possible occurrence of embolism or spasm in three cases warrants a cautious approach to application of the metal laser probe in the coronary catheterization room. The primary benefit of laser recanalization with modified fibre tips is the possible transformation of a candidate for surgery into a candidate for balloon angioplasty. It remains to be established whether prior laser debulking of the atheroma will reduce the incidence of acute complications of balloon dilatation and will reduce restenosis in the subsequent year. In the past two years an avalanche of laser and non-laser recanalization schemes have been developed. In peripheral arteries, early results of most methods have shown an acceptably low incidence of acute perforations or other complications. The human arterial wall can take a heavy beating, both mechanically and thermally. In the next decade, catheter intervention techniques will progressively contribute to the treatment of peripheral and coronary artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dotter CT, Judkins MP. Transluminal treatment of arteriosclerotic obstruction: description of a new technique and a preliminary report of its application.Circulation 1964,30:654–70

    PubMed  CAS  Google Scholar 

  2. Grüntzig AR. Transluminal dilatation of coronary-artery stenosis (letter).Lancet 1978, i:263.

    Article  Google Scholar 

  3. Grüntzig AR, King SB, Schlumpf M, Siegenthaler W. Long-term follow-up of percutaneous transluminal coronary angioplasty. The early Zurich experience.N Engl J Med 1987,316:1127–32

    Article  Google Scholar 

  4. Rosing DR, Cannon RO, Watson RM et al. Three year anatomic, functional and clinical follow-up after successful percutaneous transluminal coronary angioplasty.J Am Coll Cardiol 1987,9:1–7

    Article  PubMed  CAS  Google Scholar 

  5. Kent KM. Coronary angioplasty. A decade of experience (Editorial).N Engl J Med 1987,316:1148–50

    Article  PubMed  CAS  Google Scholar 

  6. Holmes DRJ, Vlietstra RE. Percutaneous transluminal coronary angioplasty: current status and future trends.Mayo Clin Proc 1986,61:865–76

    PubMed  Google Scholar 

  7. Hjemdahl-Monsen CE, Lewis HD, Cairus J et al. Role of antithrombotic therapy in unstable angina, myocardial infarction and sudden death.J Am Coll Cardiol 1986,8:67B-75B

    Article  PubMed  CAS  Google Scholar 

  8. Abela GS, Normann SJ, Cohen D et al. Effects of carbon dioxide, Nd-YAG, and argon laser radiation on coronary atheromatous plaques.Am J Cardiol 1982,50:1199–1205

    Article  PubMed  CAS  Google Scholar 

  9. Lee G, Ikeda R, Herman I et al. The qualitative effects of laser irradiation on human arteriosclerotic disease.Am Heart J 1983,105:885–9

    Article  PubMed  CAS  Google Scholar 

  10. Isner JM, Donaldson RF, Deckelbaum LI et al. The excimer laser: gross, light microscopic and ultrastructural analysis of potential advantages for use in laser therapy of cardiovascular disease.J Am Coll Cardiol 1985,6:1102–9

    Article  PubMed  CAS  Google Scholar 

  11. Bowker TJ, Cross FW, Rumsby PT et al. Excimer laser angioplasty: quantitative comparison in vitro of three ultraviolet wavelengths on tissue ablation and haemolysis.Lasers Med Sci 1986,1:91–9

    Article  Google Scholar 

  12. Choy DSJ, Stertzer SH, Rotterdam HZ, Bruno MS. Laser coronary angioplasty: experience with 9 cadaver hearts.Am J Cardiol 1982,50:1209–11

    Article  PubMed  CAS  Google Scholar 

  13. Abela GS, Normann SJ, Cohen DM et al. Laser recanalization of occluded atherosclerotic arteries in vivo and in vitro.Circulation 1985,71:403–11

    PubMed  CAS  Google Scholar 

  14. Lee G, Ikeda RM, Chan MC et al. Limitations, risks and complications of laser recanalization: a cautious approach warranted (Editorial).Am J Cardiol 1985,56:181–5

    Article  PubMed  CAS  Google Scholar 

  15. Isner JM, Clarke RH. Laser angioplasty: unraveling the Gordian knot (Editorial).J Am Coll Cardiol 1986,7:705–8

    Article  PubMed  CAS  Google Scholar 

  16. Ginsburg R, Wexler L, Mitchell RS, Profitt D. Percutaneous transluminal laser angioplasty for treatment of peripheral vascular disease. Clinical experience with 16 patients.Radiology 1985,156:619–24

    PubMed  CAS  Google Scholar 

  17. Cumberland DC, Tayler DI, Procter AE. Use of lasers in percutaneous peripheral angioplasty: early clinical experience.Semin Intervent Radiol 1986,3:65–74

    Google Scholar 

  18. Geschwind HJ, Teisseire B, Boussignac G, Vieilledent C. Transluminal laser angioplasty in man.Semin Intervent Radiol 1986,3:31–6

    Google Scholar 

  19. Geschwind H, Fabre M, Chaitman BR et al. Histopathology after ND-YAG laser percutaneous transluminal angioplasty of peripheral arteries.J Am Coll Cardiol 1986,8:1089–95

    Article  PubMed  CAS  Google Scholar 

  20. Hussein H. A novel fiberoptic laser probe for treatment of occlusive vessel disease.SPIE 1986,Optical Laser Technology in Medicine 605:59–66

    Google Scholar 

  21. Cumberland DC, Sanborn TA, Tayler DI et al. Percutaneous laser thermal angioplasty: initial clinical results with a laser probe in total peripheral artery occlusions.Lancet 1986,i:1457–9

    Article  Google Scholar 

  22. Cumberland DC, Starkey IR, Oakley GDG et al. Percutaneous laser-assisted coronary angioplasty (letter).Lancet 1986,ii:214

    Article  Google Scholar 

  23. Sanborn TA, Faxon DP, Kellett MA, Ryan TJ. Percutaneous coronary laser thermal angioplasty.J Am Coll Cardiol 1986,8:1437–40

    Article  PubMed  CAS  Google Scholar 

  24. Detre K, Costigan T, Kelsey S et al. PTCA in 1985: NHLBIPTCA registry (abstr).J Am Coll Cardiol 1987,9:19A

    Google Scholar 

  25. Kemp HG. Percutaneous transluminal coronary angioplasty. The New York State experience for 1983, 1984, and 1985 (abstr).Circulation 1986,72(Suppl II):II-192

    Google Scholar 

  26. Lam JY, Chesebro JH, Steele PM et al. Deep arterial injury during experimental angioplasty: relation to a positive indium-111-labeled scintigram, quantitative platelet deposition and mural thrombosis.J. Am Coll Cardiol 1986,8:1380–6

    Article  PubMed  CAS  Google Scholar 

  27. Sherman CT, Litvack F, Grundfest W et al. Coronary angioscopy in patients with unstable angina pectoris.N Engl J Med 1986,315:913–9

    Article  PubMed  CAS  Google Scholar 

  28. Kemp HG. Coronary angioplasty and the persistent problem of restenosis (Editorial).J Am Coll Cardiol 1986,8:1277–8

    Article  PubMed  Google Scholar 

  29. Blackshear JL, O'Callaghan WG, Califf RM. Medical approaches to prevention of restenosis after coronary angioplasty (Review).J Am Coll Cardiol 1987,4:834–48

    Article  Google Scholar 

  30. Isner JM, Clarke RH, Donaldson RF, Aharon A. Identification of photoproducts liberated by in vitro argon laser irradiation of atherosclerotic plaque, calcified cardiac valves and myocardium.Am J Cardiol 1985,55:1292–6

    Article  Google Scholar 

  31. Abela GS, Crea F, Smith W et al. In vitro effects of argon laser radiation on blood: quantitative and morphologic analysis.J Am Coll Cardiol 1985,5:231–7

    Article  PubMed  CAS  Google Scholar 

  32. Case RB, Choy DS, Dwyer EM, Silvernail PJ. Absence of distal emboli during in vivo laser recanalization.Lasers Surg Med 1985,5:281–9

    Article  PubMed  CAS  Google Scholar 

  33. Gorisch W, Boergen KP. Heat-induced contraction of blood vessels.Lasers Surg Med 1982,2:1–13

    PubMed  CAS  Google Scholar 

  34. Abela GS, Cohen D, Feldman RL et al. Use of laser radiation to recanalize stenosed arteries in a live animal model (abstr).Circulation 1982,66(Suppl II):II-366

    Google Scholar 

  35. Carruth JAS, McKenzie AL. Medical lasers. Science and clinical practice. Bristol: Adam Hilger, 1986:58–80

    Google Scholar 

  36. Van Gemert MJC, Welch AJ, Bonnier JJRM et al. Some physical concepts in laser angioplasty.Semin Intervent Radiol 1986,3:27–38

    Google Scholar 

  37. Van Gemert MJC, Schets GACM, Stassen EG et al. Optical properties of human blood vessel wall and plaque.Lases Surg Med 1985,5:235–8

    Article  Google Scholar 

  38. Bowker TJ. Laser-tissue interaction and arterial perforation thresholds in laser angioplasty.Semin Intervent Radiol 1986,3:39–46

    Google Scholar 

  39. Abela GS, Normann SJ, Cohen DM et al. Laser recanalization of occluded atherosclerotic arteries in vivo and in vitro.Circulation 1985,71:403–11

    PubMed  CAS  Google Scholar 

  40. Isner JM, Donaldson RF, Funai JT et al. Factors contributing to perforations resulting from laser coronary angioplasty: observations in an intact human postmortem preparation of intraoperative laser coronary angioplasty.Circulation 1985,72(Suppl II):II—191—9

    Google Scholar 

  41. Crea F, Abela GS, Fenech A et al. Transluminal laser irradiation of coronary arteries in live dogs: an angiographic and morphologic study of acute effects.Am J Cardiol 1986,57:171–4

    Article  PubMed  CAS  Google Scholar 

  42. Crea F, Fenech A, Smith W et al. Laser recanalization of acutely thrombosed coronary arteries in live dogs: early results.J Am Coll Cardiol 1985,6:1052–6

    Article  PubMed  CAS  Google Scholar 

  43. Gerrity RG, Loop FD, Golding LAR et al. Arterial response to laser operation for removal of atherosclerotic plaques.J Thorac Cardiovasc Surg 1983,85:409–21

    PubMed  CAS  Google Scholar 

  44. Abela GS, Crea F, Seeger JM et al. The healing process in normal canine arteries and in atherosclerotic monkey arteries after transluminal laser irradiation.Am J Cardiol 1985,56:983–8

    Article  PubMed  CAS  Google Scholar 

  45. Douville EC, Kempczinski RF, Doerger PT et al. Effects of Nd:YAG laser energy on the arterial wall: evaluation of a new contact delivery system.J Surg Res 1987,42:185–91

    Article  PubMed  CAS  Google Scholar 

  46. Lee G, Ikeda RM, Theis JH et al. Acute and chronic complications of laser angioplasty: Vascular wall damage and formation of aneurysms in the atherosclerotic rabbit.Am J Cardiol 1984,53:290–3

    Article  PubMed  CAS  Google Scholar 

  47. Kaminow IP, Wiesenfeld JM, Choy DSI. Argon laser disintegration of thrombus and atherosclerotic plaque.Appl Optics 1984,23:1301–2

    CAS  Google Scholar 

  48. Prince MR, Deutsch TF, Mathews-Roth MM et al. Preferential light absorption in atheromas in vitro. Implications for laser angioplasty.J. Clin Invest 1986,78:295–302

    PubMed  CAS  Google Scholar 

  49. Prince MR, Deutsch TF, Shapiro AH et al. Selective ablation of atheromas using a flashlamp-excited dye laser at 465 nm.Proc Natl Acad Sci USA 1986,83:7064–8

    Article  PubMed  CAS  Google Scholar 

  50. Cross FW, Mills TN, Bown SG. Pulsed Nd-YAG laser effects on normal and atheromatous aorta in vitro.Lasers Life Sci 1987,1:193–211

    Google Scholar 

  51. Selzer PM, Murphy-Chutorian D, Ginsburg R, Wexler L. Optimizing strategies for laser angioplasty.Invest Radiol 1985,20:860–6

    Article  PubMed  CAS  Google Scholar 

  52. Shelton ME, Hoxworth B, Shelton JA et al. A new model to study quantitative effects of laser angioplasty on human atherosclerotic plaque.J Am Coll Cardiol 1986,7:909–15

    Article  PubMed  CAS  Google Scholar 

  53. Kaplan MD, Case RB, Choy DS. Vascular recanalization with the argon laser: the role of blood in the transmission of laser energy.Lasers Surg Med 1985,5:275–9

    Article  PubMed  CAS  Google Scholar 

  54. Fenech A, Abela GS, Crea F et al. A comparative study of laser beam characteristics in blood and saline media.Am J Cardiol 1985,55:1389–92

    Article  PubMed  CAS  Google Scholar 

  55. Lawrence PF, Dries DJ, Moatamed F, Dixon J. Acute effects of argon laser on human atherosclerotic plaque.J Vasc Surg 1984,1:852–9

    Article  PubMed  CAS  Google Scholar 

  56. Grundfest WS, Litvack F, Forrester JS et al. Laser ablation of human atherosclerotic plaque without adjacent tissue injury.J Am Coll Cardiol 1985,5:929–33

    Article  PubMed  CAS  Google Scholar 

  57. Deckelbaum LI, Isner JM, Donaldson RF et al. Use of pulsed energy delivered to minimize tissue injury resulting from carbon dioxide laser irradiation of cardiovascular tissues.J Am Coll Cardiol 1986,7:898–908

    Article  PubMed  CAS  Google Scholar 

  58. Grundfest WS, Litvack F, Doyle L et al. Comparison of in vitro and in vivo thermal effects of argon and excimer lasers for laser angioplasty (abstr).Circulation 1986,74(Suppl II):II-204

    Google Scholar 

  59. Leon MB, Smith PD, Lu DU et al. In vivo excimer laser angioplasty: design criteria and preliminary animal results (abstr).Circulation 1986,74(Suppl II):II-8

    Google Scholar 

  60. Spears JR, Serur J, Shropshire D, Paulin S. Fluorescence of experimental atheromatous plaques with hematoporphyrin derivative.J. Clin Invest 1983,71:395–9

    Article  PubMed  CAS  Google Scholar 

  61. Murphy-Chutorian D, Kosek J, Mok W et al. Selective absorption of ultraviolet laser energy by human atherosclerotic plaque treated with tetracycine.Am J Cardiol 1985,55:1293–7

    Article  PubMed  CAS  Google Scholar 

  62. Spokojny AM, Serur JR, Skillman J, Spears JR, Uptake of hematoporphyrin derivative by atheromatous plaques: studies in human in vitro and rabbit in vivo.J Am Coll Cardiol 1986,8:1387–92

    Article  PubMed  CAS  Google Scholar 

  63. Spears JR. Percutaneous laser treatment of atherosclerosis: an overview of emerging techniques.Cardiovasc Intervent Radiol 1986,9:303–12

    Article  PubMed  CAS  Google Scholar 

  64. Abela GS, Seeger JM, Barbieri E et al. Laser angioplasty with angioscopic guidance in humans.J Am Coll Cardiol 1986,8:184–92

    Article  PubMed  CAS  Google Scholar 

  65. Lee G, Reis RL, Chan MC et al. Clinical laser recanalization of coronary obstruction. Angioscopic and angiographic documentation.Chest 1986,90:770–2

    PubMed  CAS  Google Scholar 

  66. Spears JR, Spokojny AM, Marais HJ. Coronary angioscopy during cardiac catheterization.J Am Coll Cardiol 1985,6:93–6

    Article  PubMed  CAS  Google Scholar 

  67. Susawa T, Yui Y, Hattori R et al. Direct observation of coronary thrombus using a newly developed ultrathin (1.2 mm) flexible angioscope.J Am Coll Cardiol 1987,9:197A

    Article  Google Scholar 

  68. Kittrell C, Willet RL, de los Santos-Pacheo C et al. Diagnosis of fibrous arterial atherosclerosis using fluorescence.Appl Optics 1985,24:2280–1

    Article  CAS  Google Scholar 

  69. Anderson HV, Zaatari GS, Roubin GS et al. Steerable fiberoptic catheter delivery of laser energy in atherosclerotic rabbits.Am Heart J 1986,111:1065–72

    Article  PubMed  CAS  Google Scholar 

  70. Cothren RM, Hayes GB, Kramer JR et al. A multifiber catheter with an optical shield for laser angiosurgery.Lasers Life Sci 1986,1:1–12

    Google Scholar 

  71. Cothren RM, Kittrell C, Hayes GB et al. Controlled light delivery for laser angiosurgery.Inst Electr Electron Eng J Quantum Electron 1986,QE-22:4–7

    Google Scholar 

  72. Kramer JR, Bott-Silverman C, Rattliff NB et al. Removal of atherosclerotic plaque using multiple short exposures of argon ion laser light.Am Heart J 1987,113:1038–40

    Article  PubMed  CAS  Google Scholar 

  73. Henry PD, Roberts R, Chin RP, Berry MJ. Estimation of arterial wall thickness and detection of atherosclerosis by laser induced argon fluorescence (abstr).J Am Coll Cardiol 1986,6:207A

    Google Scholar 

  74. Joffe SN. Contact neodymium: YAG laser surgery in gastroenterology: a preliminary report.Lasers Surg Med 1986,6:155–7

    Article  PubMed  CAS  Google Scholar 

  75. Verdaasdonk RM, Cross FW, Borst C. Physical properties of sapphire fibre tips for laser angioplasty.Lasers Med Sci 1987,2:183–8

    Google Scholar 

  76. Verdaasdonk RM, Frank F, Borst C. Diaphragm in cavity for low output power application of 100 W Nd-YAG laser. In: Wollenck G, Laufer G, Ginsburg R, Wolner J (eds), ‘Lasers in cardiovascular diseases’ (Proc Symp Baden/Vienna, June 1986), pp. 37–40. München, E.B.M. Verlag

    Google Scholar 

  77. Geschwind HJ, Blair JD, Mongkolsmai D et al. Development and experimental application of contact probe catheter for laser angioplasty.J Am Coll Cardiol 1987,9:101–7

    Article  PubMed  CAS  Google Scholar 

  78. Borst C, Verdaasdonk RM, Smits PC et al. Laser angioplasty with sapphire contact probe (abstr).Laser Med Chir (Abstract issue 1st Int Symp Lasers Cardiovasc Dis), Baden/Vienna, June 1986, p 6

  79. Fourrier JL, Brunetaud JM, Prat A et al. Percutaneous laser angioplasty with sapphire tip (letter).Lancet 1987,i:105

    Article  Google Scholar 

  80. Cross FW, Bowker TJ. Percutaneous laser angioplasty with sapphire tips (letter).Lancet 1987,i:330

    Article  Google Scholar 

  81. Bowker TJ, Cross FW, Bown SG, Rickards AF. Reduction of vessel wall perforation by the use of sapphire tipped optical fibres in lase angioplasty.Br Heart J 1987,57:88

    Google Scholar 

  82. White CJ, Ramee SR, Card H et al. Laser angioplasty in atherosclerotic swine: recanalization of occluded iliac arteries using a glass ‘ball tip’ fiber (abstr).J Am Coll Cardiol 1987,9:189A

    Article  Google Scholar 

  83. Geschwind HJ, Aita M, Ramee S et al. Lensed fibers for laser assisted balloon angioplasty (abstr).J Am Coll Cardiol 1987,9:177A

    Article  Google Scholar 

  84. Nordstrom LA, Dorros G. Laser-enhanced angioplasty: early clinical experience (abstr).J Am Coll Cardiol 1987,9:178A

    Google Scholar 

  85. Verdaasdonk RM, Borst C, Boulanger LHMA, van Gemert MJC. Laser angioplasty with a metal laser probe (‘hot tip’): probe temperature in blood.Lasers Med Sci 1987,2:153–8

    Google Scholar 

  86. Lee G, Ikeda RM, Chan MC et al. Dissolution of human atherosclerotic disease by fiberoptic laser-heated metal cautery cap.Am Heart J 1984,107:777–8

    Article  PubMed  CAS  Google Scholar 

  87. Sanborn TA, Faxon DP, Haudenschild CC, Ryan TJ. Experimental angioplasty: circumferential distribution of laser thermal energy with a laser probe.J Am Coll Cardiol 1985,5:934–8

    Article  PubMed  CAS  Google Scholar 

  88. Abela GS, Fenech A, Crea F, Conti CR. ‘Hot tip’: another method of laser vascular recanalization.Lasers Surg Med 1985,5:327–35

    PubMed  CAS  Google Scholar 

  89. Crea F, Davies GJ, McKenna WJ et al. Transluminal laser treatment of coronary arteries in live dogs with metal-capped optical fibres: effect of blood flow on the degree of intimal thermoablation.Lasers Med Sci 1987,2:159–63

    Google Scholar 

  90. Theis JH, Lee GH, Chan MC et al. Laser treatment of atherosclerosis in the monkey: re-endothelialization without thrombosis effected by fiberoptic metal cap (abstr).J Am Coll Cardiol 1986,7:212A

    Google Scholar 

  91. Crea F, Davies GJ, McKenna W et al. Percutaneous laser recanalization of coronary arteries (letter).Lancet 1986,ii:214–5

    Article  Google Scholar 

  92. Lee G, Garcia JM, Chan MC et al. Clinically successful long-term laser coronary recanalization.Am Heart J 1986,12:1323–5

    Article  Google Scholar 

  93. Bradley AB, Welch AJ, Torres JH et al. Laser probe ablation of normal aorta and plaque: correlation of thermographic and histologic findings (abstr).J Am Coll Cardiol 1987,9:104A

    Google Scholar 

  94. Borst C, Boulanger LHMA, Verdaasdonk RM et al. Angioplasty with metal laser probe: temperature of probe in vitro and in vivo. Proc 1st Eur Workshop Lasers Med, Chania, April 1987

  95. Abela GS, Barbieri E, Khoury A et al. Coronary artery laser angioplasty without perforation using a sapphire lens tipped optical fiber.J Am Coll Cardiol 1987,9:222A

    Google Scholar 

  96. Hiehle JF, Bourgelais DBC, Shapshay S et al. Nd-YAG laser fusion of human atheromatous plaque-arterial wall separations in vitro.Am J Cardiol 1985,56:953–7

    Article  PubMed  Google Scholar 

  97. Sinclair IN, Anand R, Spears JR. Laser balloon angioplasty: thermal profile for in vitro welding of neointimal arterial separations (abstr).J Am Coll Cardiol 1987,9:105A

    Google Scholar 

  98. Lu DY, Leon MB, Bowman RL. Electrical thermal angioplasty in an atherosclerotic rabbit model (abstr).Circulation 1986,74(Suppl II):II-8

    Google Scholar 

  99. Lu DY, Leon MB, Bowman RL. A prototype catalytic thermal tip catheter: design parameters and in vitro tissue results (abstr).J Am Coll Cardiol 1987,9:187A

    Google Scholar 

  100. Slager CJ, Essed CE, Schuurbiers JHC et al. Vaporization of atherosclerotic plaques by spark erosion.J Am Coll Cardiol 1985,5:1382–6

    Article  PubMed  CAS  Google Scholar 

  101. Hansen DD, Hall M, Intlekofer MJ et al. In vivo rotational angioplasty in atherosclerotic rabbits; comparison of angioscopy and angiography (abstr).Circulation 1986,74(Suppl II):II-362

    Google Scholar 

  102. Kensey KR, Zarins C, Whitimore A, Nash J. Dynamic angioplasty as a treatment modality in peripheral vascular disease: the first clinical results (abstr).J Am Coll Cardiol 1987,9:180A

    Google Scholar 

  103. Simpson JB, Johnson DE, Braden LJ et al. Transluminal coronary atherectomy (TCA): results in 21 human cadaver vascular segments (abstr).Circulation 1986,74(Suppl II):II-202

    Google Scholar 

  104. Simpson JB, Zimmerman JJ, Selmon MR et al. Transluminal atherectomy: initial clinical results in 27 patients (abstr).Circulation 1986,74(Suppl II):II-203

    Google Scholar 

  105. Schatz R, Palmaz J, Garcia F et al. Balloon expandable intracoronary stents in dogs (abstr).Circulation 1986,74(Suppl II):II-458

    Google Scholar 

  106. Sigwart U, Puel J, Mirkovitch V et al. Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty.N Engl J Med 1987,316:701–6

    Article  PubMed  CAS  Google Scholar 

  107. Leyser LJ, Bundy MA, Abreo F et al. Evaluation of a coronary lysing system: results of a preclinical safety and efficacy study.Catheteriz Cardiovasc Diagn 1986,12:246–54

    Article  CAS  Google Scholar 

  108. Fournial G, Choy D, Marco J et al. Desobstruction des artères coronaires par faisceau laser. Experience peroperatoire.Arch Mal Coeur Vaiss 1985,78:1061–5

    PubMed  CAS  Google Scholar 

  109. Hangartner JRW, Charleston AJ, Davies MJ, Thomas AC. Morphological characteristics of clinically significant coronary artery stenosis in stable angina.Br Heart J 1986,56:501–8

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borst, C. Percutaneous recanalization of arteries: Status and prospects of laser angioplasty with modified fibre tips. Laser Med Sci 2, 137–151 (1987). https://doi.org/10.1007/BF02594152

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02594152

Key words

Navigation