Skip to main content
Log in

Lipid peroxidation in low density lipoproteins from human plasma and egg yolk promotes accumulation of 1-acyl analogues of platelet-activating factor-like lipids

  • Article
  • Published:
Lipids

Abstract

Oxidative modification of low density lipoprotein (LDL) is known to be a key event for induction of atherosclerosis. However, there has been little progress in structural elucidation of oxidized lipids, especially oxidatively fragmented phospholipids retaining a glycerol backbone. In this study, we found that LDL derived from egg yolk has no platelet-activating factor (PAF) acetylhydrolase activity, and that prolonged incubation of egg yolk LDL with Cu2+ resulted in the formation of various PAF-like lipids: 1-acyl type phosphatidylcholines with ansn-2-short-chain dicarboxylate or monocarboxylate group. Only a very small amount of the PAF-like lipid having ansn-2-short-chain monocarboxylate group was detected by gas chromatography-mass spectrometry in Cu2+-oxidized LDL from human plasma with high PAF-acetylhydrolase activity, which has been reported to hydrolyze PAF-like lipids to lysophosphatidylcholines. Preincubation of plasma LDL with diisopropyl fluorophosphate dose-dependently inhibited PAF-acetylhydrolase activity, resulting in accumulation of the PAF-like lipids when the LDL was oxidized with Cu2+. As well as PAF and lysophosphatidylcholines, several PAF-like lipids were found to inhibit [3H]thymidine incorporation into cultured vascular smooth muscle cells derived from rat aorta. The possible formation of PAF-like lipids by lipid peroxidation in LDL is discussed as well as its possible significance for induction of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

acylPAF:

1 long-chain acyl analogue of platelet- activating factor

BSA:

bovine serum albumin

DC:

short-chain dicarboxylate

DFP:

diisopropyl fluorophosphate

FAB-MS:

fast atom bombardment-mass spectrometry

GC-MS:

gas chromatography-mass spectrometry

GLC:

gas-liquid chromatography

GPC:

sn-glycero-3-phosphocholine

LDL:

low density lipoprotein

lysoPAF:

lysoplatelet-activating factor

lysoPC:

lysophosphatidylcholine

MC:

short-chain monocarboxylate

PAF:

platelet-activating factor

PAF-AH:

platelet-activating factor acetylhydrolase

PC:

phosphatidylcholine

tBDMS:

tert-butyldimethylsilyl

TLC:

thin-layer chromatography

VSMC:

vascular smooth muscle cells

References

  1. Braquet, P., Touqui, L., Shen, T.Y., and Vargaftig, B.B. (1989) Perspectives in Platelet-Activating Factor Research,Pharmacol. Rev. 39, 97–145.

    Google Scholar 

  2. Hanahan, D.J. (1986) Platelet Activating Factor: A Biologically Active Phosphoglyceride,Ann. Rev. Biochem. 55, 483–509.

    Article  PubMed  CAS  Google Scholar 

  3. Snyder, F. (1990) Platelet-Activating Factor and Related Acetylated Lipids as Potent Biologically Active Cellular Mediators,Am. J. Physiol. 259, C697-C708.

    PubMed  CAS  Google Scholar 

  4. Sugiura, T., Yamashita, A., Kudo, N., Fukuda, T., Miyamoto, T., Cheng, N., Kishimoto, S., Waku, K., Tanaka, T., Tsukatani, H., and Tokumura, A. (1995) Platelet-Activating Factor and Its Structural Analogues in the EarthwormEisenia foetida, Biochim. Biophys. Acta 1258, 19–26.

    PubMed  Google Scholar 

  5. Tokumura, A., Kamiyasu, K., Takauchi, K., and Tsukatani, H. (1987) Evidence for Existence of Various Homologues and Analogues of Platelet Activating Factor in a Lipid Extract of Bovine Brain,Biochem. Biophys. Res. Commun. 145, 415–425.

    Article  PubMed  CAS  Google Scholar 

  6. Tokumura, A., Asai, T., Takauchi, K., Kamiyasu, K., Ogawa, T., and Tsukatani, H. (1988) Novel Phospholipids with Aliphatic Dicarboxylic Acid Residues in a Lipid Extract from Bovine Brain,Biochem. Biophys. Res. Commun. 155, 863–869.

    Article  PubMed  CAS  Google Scholar 

  7. Tokumura, A., Tanaka, T., Yotsumoto, T., and Tsukatani, H. (1991) Identification ofsn-2-ω-Hydroxycarboxylate-Containing Phospholipids in a Lipid Extract from Bovine Brain,Biochem. Biophys. Res. Commun. 177, 466–473.

    Article  PubMed  CAS  Google Scholar 

  8. Tanaka, T., Minamino, H., Unezaki, S., Tsukatani, H., and Tokumura, A. (1993) Formation of Platelet-Activating Factor-Like Phospholipids by Fe2+/Ascorbate/EDTA-Induced Lipid Peroxidation,Biochim. Biophys. Acta 1166, 264–274.

    PubMed  CAS  Google Scholar 

  9. Tanaka, T., Iimori, M., Tsukatani, H., and Tokumura, A. (1994) Platelet-Aggregating Effects of Platelet-Activating Factor-Like Phospholipids Formed by Oxidation of Phosphatidylcholines Containing ansn-2-Polyunsaturated Fatty Acyl Group,Biochim. Biophys. Acta 1210, 202–208.

    PubMed  CAS  Google Scholar 

  10. Itabe, H., Kushi, Y., Handa, S., and Inoue, K. (1988) Identification of 2-Azelaoylphosphatidylcholine as One of the Cytotoxic Products Generated During Oxyhemoglobin-Induced Peroxidation of Phosphatidylcholine,Biochim. Biophys. Acta 962, 8–15.

    PubMed  CAS  Google Scholar 

  11. Patel, K.D., Zimmerman, G.A., Prescott, S. M., and McIntyre, T.M. (1992) Novel Leukocyte Agonists Are Released by Endothelial Cells Exposed to Peroxide,J. Biol. Chem. 267, 15168–15175.

    PubMed  CAS  Google Scholar 

  12. Esterbauer, H., Gebicki, J., Puhl, H., and Jürgens, G. (1992) The Role of Lipid Peroxidation and Antioxidants in Oxidative Modification of LDL,Free Radic. Biol. Med. 13, 341–390.

    Article  PubMed  CAS  Google Scholar 

  13. Watson, A.D., Navab, M., Hama, S.Y., Sevanian, A., Prescott, S.M., Stafforini, D.M., McIntyre, T.M., La Du, B.N., Fogelman, A.M., and Berliner, J.A. (1995) Effect of Platelet Activating Factor-Acetylhydrolase on the Formation and Action of Minimally Oxidized Low Density Lipoprotein,J. Clin. Invest. 95, 774–782.

    PubMed  CAS  Google Scholar 

  14. Heery, J.M., Kozak, M., Stafforini, D.M., Jones, D.A., Zimmerman, G.A., McIntyre, T.M., and Prescott, S.M. (1995) Oxidatively Modified LDL Contains Phospholipids with Platelet-Activating Factor-Like Activity and Stimulates the Growth of Smooth Muscle Cells,J. Clin. Invest. 96, 2322–2330.

    Article  PubMed  CAS  Google Scholar 

  15. Kamido, H., Kuksis, A., Marai, L., and Myher, J.J. (1995) Lipid Ester-Bound Aldehydes Among Copper-Catalyzed Peroxidation Products of Human Plasma Lipoproteins,J. Lipid Res. 36, 1876–1886.

    PubMed  CAS  Google Scholar 

  16. Tokumura, A., Takauchi, K., Asai, T., Kamiyasu, K., Ogawa, T., and Tsukatani, H. (1998) Novel Molecular Analogues of Phosphatidylcholines in a Lipid Extract from Bovine Brain: 1-Long-Chain Acyl-2-Short-Chain Acyl-sn-Glycero-3-Phosphocholines,J. Lipid Res. 155, 863–869.

    Google Scholar 

  17. Hatch, F.T., and Lees, R.S. (1968) Practical Methods for Plasma Lipoprotein Analysis,Adv. Lipid Res. 6, 1–68.

    PubMed  CAS  Google Scholar 

  18. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951) Protein Measurement with Folin Phenol Reagent,J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  19. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification,Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  20. Chalvarjian, A., and Rudnicki, E. (1970) Determination of Lipid Phosphorus in the Nanomolar Range,Anal. Biochem. 36, 225–226.

    Article  Google Scholar 

  21. Tokumura, A., Iimori, M., Nishioka, Y., Kitahara, M., Sakashita, M., and Tanaka, S. (1994) Lysophosphatidic Acids Induce Proliferation of Cultured Vascular Smooth Muscle Cells from Rat Aorta,Am. J. Physiol. 267, C204-C210.

    PubMed  CAS  Google Scholar 

  22. Cabot, M.C., Faulkner, L.A., Lackey, R.J., and Snyder, F. (1984) Vertebrate Class Distribution of 1-Alkyl-2-Acetyl-sn-Glycero-3-Phosphocholine Acetylhydrolase in Serum,Comp. Biochem. Physiol. 78B, 37–40.

    CAS  Google Scholar 

  23. Steinbrecher, U.P., and Prichard, P.H. (1989) Hydrolysis of Phosphatidylcholine During LDL Oxidation Is Mediated by Platelet-Activating Factor Acetylhydrolase,J. Lipid Res. 30, 305–315.

    PubMed  CAS  Google Scholar 

  24. Stafforini, D.M., Zimmerman, G.A., McIntyre, T.M., and Prescott, S.M. (1993) The Platelet-Activating Factor Acetylhydrolase from Human Plasma Prevents Oxidative Modification of Low-Density Lipoprotein,Trans. Assoc. Amer. Phys. 105, 44–63.

    Google Scholar 

  25. Sugiyama, S., Kugiyama, K., Ohgushi, M., Fujimoto, K., and Yasue, H. (1994) Lysophosphatidylcholine in Oxidized Low-Density Lipoprotein Increases Endothelial Susceptibility to Polymorphonuclear Leukocytes-Induced Endothelial Dysfunction in Porcine Coronary Arteries. Role of Protein Kinase C,Circ. Res. 74, 565–575.

    PubMed  CAS  Google Scholar 

  26. Liapikos, T.A., Antonopoulou, S., Karabina, S.P., Tsoukatos, D.C., Demopoulos, C.A., and Tselepis, A.D. (1994) Platelet-Activating Factor Formation During Oxidative Modification of Low-Density Lipoprotein When PAF-acetylhydrolase Has Been Inactivated,Biochim. Biophys. Acta 1212, 353–360.

    PubMed  CAS  Google Scholar 

  27. Smiley, P.L., Stremler, K.E., Prescott,, S.M., Zimmerman, G.A., and McIntyre, T.M. (1991) Oxidatively Fragmented Phosphatidylcholines Activate Human Neutrophils Through the Receptor for Platelet-Activating Factor,J. Biol. Chem. 266, 11104–11110.

    PubMed  CAS  Google Scholar 

  28. Tokumura, A. (1995) A Family of Phospholipid Autacoids: Occurrence, Metabolism and Bioactions,Prog. Lipid Res. 34, 151–184.

    Article  PubMed  CAS  Google Scholar 

  29. Stafforini, D.M., Carter, M.E., Zimmerman, G.A., McIntyre, T.M., and Prescott, S.M. (1989) Lipoproteins Alter the Catalytic Behavior of the Platelet-Activating Factor Acetylhydrolase in Human Plasma,Proc. Natl. Acad. Sci. U.S.A. 86, 2393–2397.

    Article  PubMed  CAS  Google Scholar 

  30. Stremler, K.E., Stafforini, D.M., Prescott, S.M., and McIntyre, T.M. (1991) An Oxidized Derivatives of Phosphatidylcholine Is a Substrate for the Platelet-Activating Factor Acetylhydrolase from Human Plasma,J. Biol. Chem. 264, 5331–5334.

    Google Scholar 

  31. Berliner, J.A., and Harberland, M.E. (1993) Role of Oxidized Low Density Lipoprotein in Atherogenesis,Curr. Opin. Lipidol. 4, 373–381.

    Article  CAS  Google Scholar 

  32. Locher, R., Weisser, B., Mengden, T., Brunner, C., and Vetter, W. (1992) Lysolecithin Actions on Vascular Smooth Muscle Cells,Biochem. Biophys. Res. Communn. 183, 156–162.

    Article  CAS  Google Scholar 

  33. Chen, Y., Morimoto, S., Kitano, S., Koh, E., Fukuo, K., Jiang, B., Chen, S., Yasuda, O., Hirotani, A., and Ogihara, T. (1995) Lysophosphatidylcholine Causes Ca2+ Influx, Enhanced DNA Synthesis and Cytotoxicity in Cultured Vascular Smooth Muscle Cells,Atherosclerosis 112, 60–76.

    Google Scholar 

  34. Chatterjee, S. (1992) Role of Oxidized Human Plasma Low Density Lipoproteins in Atherosclerosis: Effects on Smooth Muscle Cell Proliferation,Mol. Cell. Biochem. 111, 143–147.

    Article  PubMed  CAS  Google Scholar 

  35. Augé, N., Pieraggi, M.T., Thiers, J.C., Negre-Salvayre, A. and Salvayre, R. (1995) Proliferative and Cytotoxic Effects of Mildly Oxidized Low-Density Lipoproteins on Vascular Smooth-Muscle Cells,Biochem. J. 309, 1015–1020.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Tokumura, A., Toujima, M., Yoshioka, Y. et al. Lipid peroxidation in low density lipoproteins from human plasma and egg yolk promotes accumulation of 1-acyl analogues of platelet-activating factor-like lipids. Lipids 31, 1251–1258 (1996). https://doi.org/10.1007/BF02587909

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02587909

Keywords

Navigation