Skip to main content
Log in

Transient convective mass transfer in Krogh tissue cylinders

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A compact economical description of transient mass transport in Krogh tissue cylinders is devised. It is based on extensions of the Gill-Subramanian dispersion technique and Sturm-Liouville theory to two-phase systems and takes into account the following aspects of convective mass transfer simultaneously: radial and axial diffusion in both blood and tissue, a localized mass-transfer resistance at the capillary membrane, and an axial diffusion barrier at each end of the cylinder. Numerical examples are provided for two situations of physiological interest: (i) Small lipid-soluble solutes encountering no localized barrier at the capillary membrane, and (ii) hydrophilic solutes, which encounter a very substantial barrier. It is shown that existing one-dimensional chromatographic models are satisfactory for the lipophilic solutes, for what is generally considered a satisfactory set of parameters for describing Krogh cylinders. However, the limitations on this treatment are emphasized, and it is shown how convective dispersion may complicate this picture. For the hydrophilic solutes Taylor dispersion is shown to be much more important than hitherto believed. It appears that existing methods of estimating capillary membrane permeabilities should be revised in the light of these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aris, R. On the dispersion of a solute in a fluid flowing through a tube.Proc. Roy. Soc. 1956,A235, 67–77.

    Google Scholar 

  • Aris, R.Proceedings of the Royal Society of London Series A 1959,252, 538.

    CAS  Google Scholar 

  • Aroesty, J., and Gross, J. F., Convection and diffusion in the microcireulation.Microvascular Research 1970,2, 247–267.

    Article  PubMed  CAS  Google Scholar 

  • Bassingthwaighte, J. B., Knopp, T. J., and Hazelrig, J. B. Concurrent flow model for capillarytissue exchanges. In C. Crone and N. A. Lassen (Eds.),Capillary permeability, Alfred Benzon Symposium II. Copenhagen: Munksgaard, 1970. Pp. 60–80.

    Google Scholar 

  • Bassingthwaighte, J. B. A concurrent flow model for extraction during transcapillary passage.Circulation Research 1974,35, 483–503.

    PubMed  CAS  Google Scholar 

  • Baz, A., Tepper, R. S., Lightfoot, E. N., and Lanphier, E. H. The risk of isobaric bubble formation in shifts of breathing medium.Federation Proceedings 1977,36, Abst. No. 1627, 579.

    Google Scholar 

  • Brenner, H. The diffusion model of longitudinal mixing in beds of finite length.Chemical Engineering Science 1962,17, 229–243.

    Article  CAS  Google Scholar 

  • Crone, C. Permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method.Acta Physiologica Scandinavica 1963,58, 292–305.

    PubMed  CAS  Google Scholar 

  • Gill, W. N., and Sankarasubramanian, R. Exact analysis of unsteady convective diffusion.Proceedings of the Royal Society of London Series A 1970,316, 341.

    Google Scholar 

  • Goresky, C. A., Ziegler, W. H., and Bach, G. G. Capillary exchange modeling: Barrier-limited and flow-limited distribution.Circulation Research 1970,27, 739–764.

    PubMed  CAS  Google Scholar 

  • Guller, B., Ypintsoi, T., Orvis, A. L., and Bassingthwaighte, J. B. Myocardial sodium extraction at varied coronary flows in the dog.Circulation Research 1975,37, 359–378.

    PubMed  CAS  Google Scholar 

  • Johnson, J. A., and Wilson, T. A. Model for capillary exchange.American Journal of Physiology 1966,210, 1299–1303.

    PubMed  CAS  Google Scholar 

  • Kindwall, E. P., Baz, A., Lightfoot, E. N., Lanphier, E. H., and Seireg, A. Nitrogen elimination in man during decompression.Undersea Biomedical Research 1975,2, 171–183.

    Google Scholar 

  • Lanphier, E. H., Tepper, R. S., and Lightfoot, E. N. New approaches to decompression modelling.Proc. of European Undersea Biomed. Soc., 3rd annual scientific mtg., Toulon, France, July 15 and 16, 1977.

  • Lee, H. L., and Lightfoot, E. N. Preliminary report on ultrafiltration induced polarization chromatography—An analog of field flow fractionation.Separation Science 1976,11, 417.

    CAS  Google Scholar 

  • Lee, H. L. A study of the synthesis and development of separations processes and specifically ultra-filtration induced polarization chromatography. Ph.D. thesis, Chem. Eng., Univ. of Wisconsin, 1976.

  • Lee, J. S., and Fronek, A. Analysis on the exchange of indicators in single capillaries.Microvascular Research 1970,2, 302–318.

    Article  PubMed  CAS  Google Scholar 

  • Levitt, D. G. Capillary-tissue exchange kinetics: An analysis of the Krogh cylinder model,Journal of Theoretical Biology 1972,34, 103–124.

    Article  PubMed  CAS  Google Scholar 

  • Lightfoot, E. N., Baz, A., Lanphier, E. H., Kindwall, E. P., and Seireg, A. The role of bubble growth kinetics in decompression.Proc. Sixth Symposium on Underwater Physiology, San Diego, California, July 6–10, 1975.

  • Perl, Wm., and Chinard, F. P. A convective-diffusion model of indicator transport through an organ.Circulation Research 1968,22, 273–298.

    PubMed  CAS  Google Scholar 

  • Perl, W., Interpolation model for evaluating permeability from indicator dilution curves. In C. Crone and N. A. Lassen (Eds.)Capillary permeability, Alfred Benzon Symposium II, Copenhagen: Munksgaard, 1970. Pp. 185–201.

    Google Scholar 

  • Ramkrishna, D., and Amundson, N. R. Transport in composite materials: Reduction to a selfadjoint formalism.Chemical Engineering Science 1974,29, 1457–1464.

    Article  CAS  Google Scholar 

  • Reis, J. F. G., Ramkrishna, D., and Lightfoot, E. N. Convective mass transfer in the presence of polarizing fields: Dispersion in hollow-fiber electropolarization chromatography.American Institute of Chemical Engineering Journal 1978,24, 679–686.

    CAS  Google Scholar 

  • Renkin, E. M. Transport of Potassium-42 from blood to tissue in isolated mammalian skeletal muscles.American Journal of Physiology 1959,197, 1205–1210.

    PubMed  CAS  Google Scholar 

  • Sangren, W. C., and Sheppard, C. W. Mathematical derivation of the exchange of a labeled substance between a liquid flowing in a vessel and an external compartment.Bulletin of Mathematical Biophysics 1953,15, 387–394.

    Article  CAS  Google Scholar 

  • Schmidt, G. W. Mathematical theory of capillary exchange as a function of tissue structure.Bulletin of Mathematical Biophysics 1952,14, 229–263.

    Article  CAS  Google Scholar 

  • Taylor, G. I. Dispersion of soluble matter in solvent flowing slowly through a tube.Proceedings of the Royal Society of London Series A 1953,219, 186.

    Article  CAS  Google Scholar 

  • Taylor, G. I. Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion.Proceedings of the Royal Society of London Series A 1954,223, 446.

    CAS  Google Scholar 

  • Tepper, R. S., Lanphier, E. H., and Lightfoot, E. N. Mixed-gas pharmaco-kinetics,Annual scietific meeting, Undersea medical society, Toronto, May 13–17, 1977.

  • Tepper, R. S. Ph.D. thesis, Dept. of Chem. Eng., Univ. of Wisconsin, 1978.

  • Tepper, R. S., Hobbs, S. H., Lanphier, E. H., and Lightfoot, E. N. The pharmaco-kinetics of inert gases. In D. O. Cooney (Ed.),Handbook of chemical engineering in medicine. Dekker, New York, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tepper, R.S., Lee, H.L. & Lightfoot, E.N. Transient convective mass transfer in Krogh tissue cylinders. Ann Biomed Eng 6, 506–530 (1978). https://doi.org/10.1007/BF02584553

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584553

Keywords

Navigation