Skip to main content
Log in

Electrical stimulation of cardiac myocytes

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The influence of nonuniform cell shape and field orientation on the field stimulation thresholds of cardiac myocytes was studied both experimentally and computationally. The percent change in excitation threshold, which was studied with patch clamp technique, was found to be 182±83.1% (mean ±SD) higher when the electric field (EF) was parallel to the transverse cell axisversus the longitudinal axis (p<0.0006). On reversing the polarity of the applied EF, the percentage change in threshold was observed to increase by 98.9±71.0% (p<0.0002), implying asymmetry of the stimulation threshold of isolated myocytes. Finite element models were made to investigate the distribution of the transmembrane potential of these experimentally studied myocytes. A typical cell model showed that the maximum transmembrane potential induced on opposite ends of the cell was 39.1 mV and −46.5 mV for longitudinal field (aligned with the long axis of the cell), but was 40.5 mV and −44.8 mV for transverse field (aligned with the short axis of the cell). More significantly, it was found that the maximum transmembrane potential occurred at discrete points or “hot spots” on the cell membrane. It is hypothesized that the depolarization of the cell initiates at the hot spot and then spreads over the entire cell. The different excitation thresholds for different polarities of the applied EF can be explained by the different maximum induced at the opposite ends of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardou, A. L., J. M. Chesnais, P. J. Birkui, M. C. Govaere, P. M. Auger, D. von Euw, and J. Degonde. Directional variability of stimulation threshold measurements in isolated guinea pig cardiomyocytes: relationship with orthogonal sequential defibrillating pulses.PACE 13:1590–1595, 1990.

    PubMed  CAS  Google Scholar 

  2. Bardou, A. L., J. Degonde, P. J. Birkui, P. Auger, J. M. Chesnais, and M. Duriez. Reduction of energy required for defibrillation by delivering shocks in orthogonal directions in the dog.PACE 11:1990–1995, 1988.

    PubMed  CAS  Google Scholar 

  3. Bardou, A. L., J. Degonde, and R. Saumont. A new method to minimize heart defibrillation energy: use of crossed delayed electric shocks.Innov. Tech. Biol. Med. 7:55–63, 1986.

    Google Scholar 

  4. Chen, P. S., P. D. Wolf, F. J. Claydon, E. G. Dixon, H. J. Vidaillet, N. D. Danieley, T. C. Pilkington, and R. E. Ideker. The potential gradient field created by epicardial defibrillation electrodes in dogs.Circulation 74:626–636, 1986.

    PubMed  CAS  Google Scholar 

  5. Dillon, S. M. Optical recordings in the rabbit heart show that defibrillation strength shocks prolong the duration of depolarization and the refractory period.Circ. Res. 69:842–856, 1991.

    PubMed  CAS  Google Scholar 

  6. Fain, E. S., M. B. Sweeny, and M. R. Franz. Improved internal defibrillation efficacy with a biphasic waveform.Am. Heart J. 117:358–364, 1989.

    Article  PubMed  CAS  Google Scholar 

  7. Frazier, D. W., W. Krassowska, P.-S. Chen, P. D. Wolf, E. G. Dixon, W. M. Smith, and R. E. Ideker. Extracellular field required for excitation in three-dimensional anisotropic canine myocardium.Circ. Res. 63:147–164, 1988.

    PubMed  CAS  Google Scholar 

  8. Gaylor, D. C., K. Prakash-Asante, and R. C. Lee. Significance of cell size and tissue structure in electrical trauma.J. Theor. Biol. 133:223–237, 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Greenbaum, R. A., S. Y. Ho, D. G. Gibson, A. E. Becker, and R. H. Anderson. Left ventricular fiber architecture in man.Br. Heart J. 45:248–263, 1981.

    PubMed  CAS  Google Scholar 

  10. Gross, D., L. M. Loew, and W. W. Webb. Optical imaging of cell membrane potential changes induced by applied electric fields.Biophys J. 50:339–348, 1986.

    PubMed  CAS  Google Scholar 

  11. Jones, D. L., G. J. Klein, G. M. Guiraudon, and A. D. Sharma. Sequential pulse defibrillation in humans: Orthogonal sequential pulse defibrillation with epicardial electrodes.J. Am. Coll. Cardiol. 11:590–596, 1988.

    Article  PubMed  CAS  Google Scholar 

  12. Jones, D. L., G. J. Klein, G. M. Guiraudon, A. D. Sharma, M. J. Kallok, J. D. Bourland, and W. A. Tacker. Internal cardiac defibrillation in man: pronounced improvement with sequential pulse delivery to two different lead orientations.Circulation 73(3):484–491, 1986.

    PubMed  CAS  Google Scholar 

  13. Jones, D. L., G. J. Klein, M. F. Rattes, A. Sohla, and A. D. Sharma. Internal cardiac defibrillation: single pulse and variety of lead orientations.PACE 11:583–591, 1988.

    PubMed  CAS  Google Scholar 

  14. Jones, J. L., R. E. Jones, and G. Balasky. Improved cardiac cell excitation with symmetrical biphasic defibrillator waveforms.Am. J. Physiol. 253:H1418-H1424, 1987.

    PubMed  CAS  Google Scholar 

  15. Kavanagh, K. M., H. J. Duff, R. Clark, K. V. Robinson, W. R. Giles, and D. G. Wyse. Monophasic versus biphasic cardiac stimulation: mechanism of decreased energy requirements.PACE 13:1268–1276, 1990.

    PubMed  CAS  Google Scholar 

  16. Kishida, H., B. Surawicz, and L. T. Fu. Effects of K+ and K+-induced polarization on (dV/dt)max threshold potential, and membrane imput resistance in guinea pig and cat ventricular myocardium.Circ. Res. 44:800–814, 1979.

    PubMed  CAS  Google Scholar 

  17. Klee, M., and R. Plonsey. Stimulation of spheroidal cells—the role of cell shape.IEEE Trans. Biomed. Eng. BME-23: 347–354, 1976.

    Article  PubMed  CAS  Google Scholar 

  18. Knisley, S. B., T. F. Blitchington, B. C. Hill, A. O. Grant, W. M. Smith, T. C. Pilkington, and R. E. Ideker. Optical measurements of transmembrane potential changes during electric field stimulation of ventricular cells.Circ. Res. 72:255–270, 1993.

    PubMed  CAS  Google Scholar 

  19. Knisley, S. B., W. M. Smith, and R. E. Ideker. Effect of field stimulation on cellular repolarization in rabbit myocardium. Implications for reentry induction.Circ. Res. 70(4): 707–715, 1992.

    PubMed  CAS  Google Scholar 

  20. Plonsey, R., and R. C. Barr. Effect of microscopic and macroscopic discontinuities on the response of cardiac tissue to defibrillating (stimulating) currents.Med. Biol. Eng. Comput. 24:130–136, 1986.

    Article  PubMed  CAS  Google Scholar 

  21. Ranjan, R., M. G. Fishler, and N. V. Thakor. Electrical “hot spot” as a mechanism of defibrillation.Comput. Cardiol. 00:245–247, 1993.

    Google Scholar 

  22. Ranjan, R., M. G. Fishler, and N. V. Thakor. Influence of cell shape on field stimulation thresholds.Proc. IEEE/EMBS 15:848–849, 1993.

    Google Scholar 

  23. Streeter, D. D. J., S. M. Spotnitz, D. P. Patel, J. J. Ross, and E. H. Sonnenblick. Fiber orientation in canine left ventricle during diastole and systole.Circ. Res. 24:339–347, 1969.

    PubMed  Google Scholar 

  24. Swartz, J. F., R. E. Jones, and R. Fletcher. Conditioning prepulse of biphasic defibrillator waveforms enhances refractoriness to fibrillation wavefronts.Circ. Res. 68:438–449, 1991.

    PubMed  CAS  Google Scholar 

  25. Trayanova, N., and T. Pilkington. A bidomain model with periodic intracellular junctions: a one-dimensional analysis.IEEE Trans. Biomed. Eng. 40:424–433, 1993.

    Article  PubMed  CAS  Google Scholar 

  26. Tung, L., and J.-R. Borderies. Analysis of electric field stimulation of single cardiac muscle cells.Biophys. J. 63: 371–386, 1992.

    Article  PubMed  CAS  Google Scholar 

  27. Tung, L., N. Sliz, and M. R. Mulligan. Influence of electrical axis of stimulation on excitation of cardiac muscle cells.Circ. Res. 69(3):722–730, 1991.

    PubMed  CAS  Google Scholar 

  28. Waller, B. F., and R. C. Schlant. Anatomy of the heart. In:The Heart: Arteries and Veins, edited by R. C. Schlant and R. W. Alexander. New York: McGraw Hill, 1994, pp. 104–108.

    Google Scholar 

  29. Weidmann, S. Electrical constants of trabecular muscle from mammalian heart.J. Physiol. 210:1041–1054, 1970.

    PubMed  CAS  Google Scholar 

  30. Zhou, X., J. P. Daubert, P. D. Wolf, W. M. Smith, and R. E. Ideker. Size of the critical mass for defibrillation (abstract).Circulation 80 (Suppl. II):II-531, 1989.

    Google Scholar 

  31. Zhou, X., S. B. Knisley, P. D. Wolf, D. L. Rollins, W. M. Smith, and R. E. Ideker. Prolongation of repolarization time by electric field stimulation with monophasic and biphasic shocks in open chest dogs.Circ. Res. 68:1761–1767, 1991.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranjan, R., Thakor, N.V. Electrical stimulation of cardiac myocytes. Ann Biomed Eng 23, 812–821 (1995). https://doi.org/10.1007/BF02584480

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584480

Keywords

Navigation