Skip to main content
Log in

The effect of two different calcium antagonists on the glomerular haemodynamics in the dog

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Kidney function of beagles fed a constant amount of food containing 3 mmol sodium.kgbodywt−1.day−1, and anaesthetized with pentobarbitone was investigated by clearance and micropuncture techniques during an intrarenal infusion of saline or the calcium antagonists verapamil (VER, 4 μg.kgbodywt−1.min−1) or nifedipine (NIF, 0.3 μg.kgbodywt−1.min−1). Neither drug changed the mean arterial pressure. Apart from the natriuresis and diuresis, which were significantly greater with NIF than with VER, the response to both drugs was similar. Increases in renal blood flow (RBF; 17% with VER, 20% with NIF), glomerular filtration rate (GFR; VER: 34%; NIF: 39%) and filtration fraction (VER: 12%; NIF: 14%) were observed; similar values were obtained at the single nephron level. Pressure in glomerular capillaries, measured directly after ablation of a thin layer of cortex corticis, was increased by 11% with VER and 10% with NIF; no changes in proximal tubular and peritubular capillary pressure were seen. The glomerular ultrafiltration coefficient (Kf) did not change with either drug. Total arteriolar resistance was decreased (VER: 20%; NIF: 15%) due to a decrease in afferent resistance (VER: 31%; NIF: 27%) with no corresponding change in efferent resistance. The cause of the lack of responsiveness of the efferent arteriole remains unclear. In conclusion, in acute experiments with intrarenal administration, both drugs increase RBF and GFR by a preferential afferent dilatory mechanism without any change in Kf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arend LJ, Haramati A, Thompson CI, Spielman WS (1984) Adenosine-induced decrease in renin release: dissociation from hemodynamic effects. Am J Physiol 247: F447-F452

    PubMed  CAS  Google Scholar 

  2. Bell AJ, Lindner A (1984) Effects of verapamil and nifedipine on renal function and hemodynamics in the dog. Renal Physiol 7: 329–343

    PubMed  CAS  Google Scholar 

  3. Berl T (1981) Cellular calcium uptake in the action of prostaglandins on renal water excretion. Kidney Int 19: 15–23

    PubMed  CAS  Google Scholar 

  4. Burke TJ, Arnols PE, Gordon JA, Bulger RE, Dobyan DC, Schrier RW (1984) Protective effect of intrarenal calcium membrane blockers before and after renal ischemia. Functional, morphological, and mitochondrial studies. J Clin Invest 74: 1830–1841

    Article  PubMed  CAS  Google Scholar 

  5. Cohen AJ, Fray JCS (1982) Calcium ion dependence of myogenic renal plasma flow autoregulation: evidence from the isolated perfused rat kidney. J Physiol (Lond) 330: 449–460

    CAS  Google Scholar 

  6. Dietz JR, Davis JO, Freeman RH, Villarreal D, Echtenkampf SF (1983) Effects of intrarenal infusion of calcium entry blockers in anesthetized dogs. Hypertension 5: 482–488

    PubMed  CAS  Google Scholar 

  7. Ek B, Sjolander M, DiBona GF, Hallbäck-Nordlander M, Ljung B (1985) Effect of felodipine on renal hemodynamics and excretion in the dog. Proc Soc Exp Biol Med 179: 201–205

    PubMed  CAS  Google Scholar 

  8. Fleming JT, Parekh N, Steinhausen M (1987) Calcium antagonists preferentially dilate preglomerular vessels of hydronephrotic kidney. Am J Physiol 253: F1157-F1163

    PubMed  CAS  Google Scholar 

  9. Heller J, Horáček V (1980) Comparison of directly measured and calculated glomerular capillary pressure in the dog kidney at varying perfusion pressure. Pflügers Arch 385: 253–258

    Article  PubMed  CAS  Google Scholar 

  10. Heller J, Horáček V (1986) Kidney function during decreased perfusion pressure due to aortic clamping and hemorrhagic hypotension: a single nephron study in the dog kidney. Renal Physiol 7: 90–101

    Google Scholar 

  11. Heller J, Horáček V (1986) Angiotensin II: preferential efferent constriction? Renal Physiol 9: 357–365

    PubMed  CAS  Google Scholar 

  12. Ichikawa I, Miele JF, Brenner BM (1979) Reversal of renal cortical actions of angiotensin II by verapamil and manganese. Kidney Int 16: 137–147

    PubMed  CAS  Google Scholar 

  13. Imagawa J, Kurosawa H, Satoh S (1986) Effects of nifedipine on renin release and renal function in anesthetized dogs. J Cardiovasc Pharmacol 8: 636–640

    Article  PubMed  CAS  Google Scholar 

  14. Kazda S, Hirth C, Stasch J-P (1988) Diuretic effect of nitrendipine contributes to its antihypertensive efficacy: A review. J Cardiovasc Pharmacol 12 [Suppl 4]: S1-S5

    Article  PubMed  CAS  Google Scholar 

  15. Loutzenhiser RD, Epstein M (1987) Renal hemodynamic effects of calcium antagonists. Am J Med 82 [Suppl 3B]: 23–28

    Article  PubMed  CAS  Google Scholar 

  16. Loutzenhiser R, Epstein M, Horton C (1987) Inhibition by Diltiazem of pressure-induced afferent vasoconstriction in the isolated perfused rat kidney. Am J Cardiol 59: 72A-75A

    Article  PubMed  CAS  Google Scholar 

  17. McCrorey HL, Berl T, Burke TJ, DeTorrente A, Schrier RW (1980) Effect of calcium transport inhibitors on renal hemodynamics and electrolyte excretion in the dog. In: Lichardus B, Schrier RW, Ponec J (eds) Hormonal regulation of sodium excretion. Biomedical, New York, pp 113–120

    Google Scholar 

  18. Navar LG (1970) Minimal preglomerular resistance and calculation of normal glomerular pressure. Am J Physiol 219: 1658–1664

    PubMed  CAS  Google Scholar 

  19. Navar LG, Rosivall L (1984) Contribution of the renin-angiotensin system to the control of intrarenal hemodynamics. Kidney Int 25: 857–868

    PubMed  CAS  Google Scholar 

  20. Navar LG, Champion WJ, Thomas CE (1986) Effect of calcium channel blockade on renal vascular resistance responses tochanges in perfusion pressure and angiotensin-converting enzyme inhibition in dogs. Circ Res 58: 874–881

    PubMed  CAS  Google Scholar 

  21. Okahara T, Abe Y, Imanishi M., Yukimura T, Yamamoto K (1981) Effect of calcium on prostaglandin E2 release in dogs. Am J Physiol 241: F77-F84

    PubMed  CAS  Google Scholar 

  22. Ono H, Kokubun H, Hashimoto K (1974) Abolition by calcium antagonists of autoregulation of renal blood flow. Naunyn-Schmiedebergs Arch Pharmacol 285: 201–207

    Article  PubMed  CAS  Google Scholar 

  23. Rosivall L, Carmines PK, Navar LG (1984) Effects of renal angiotensin I infusion on glomerular hemodynamics in sodium replete dogs. Kidney Int 26: 263–268

    PubMed  CAS  Google Scholar 

  24. Roy MW, Guthrie GP Jr, Holladay FP, Kotchen TA (1983) Effects of verapamil on renin and aldosterone in the dog and rat. Am J Physiol 245: E410-E416

    PubMed  CAS  Google Scholar 

  25. Steinhausen M, Snoei H, Parekh N, Baker R, Johnson PC (1983) Hydronephrosis: a new method to visualize vas afferens, efferens, and glomerular network. Kidney Int 23: 794–806

    PubMed  CAS  Google Scholar 

  26. Thurau K (1964) Autoregulation of renal blood flow and glomerular filtration rate, including data on tubular and peritubular capillary pressures and vessel wall tension. Circ Res 14-15 [Suppl I]: I132-I141

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heller, J., Horáček, V. The effect of two different calcium antagonists on the glomerular haemodynamics in the dog. Pflugers Arch. 415, 751–755 (1990). https://doi.org/10.1007/BF02584016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584016

Key words

Navigation