Skip to main content
Log in

Mammary fibroblasts stimulate growth, alveolar morphogenesis, and functional differentiation of normal rat mammary epithelial cells

  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Stromal-epithelial interactions play a profound role in regulating normal and tumor development in the mammary gland. The molecular details of these events, however, are incompletely understood. A novel serum-free transwell coculture system was developed to study the natural paracrine interactions between mammary epithelial cells (MEC) and mammary fibroblasts (MFC) isolated from normal rats during puberty. The MEC were cultured within a reconstituted basement membrane (RBM) in transwell inserts with or without MFC in the lower well. The presence of MFC stimulated epithelial cell growth, induced alveolar morphogenesis, and enhanced casein accumulation, a marker of the functional differentiation of MEC, but did not induced ductal morphogenesis. Potent mitogenic, morphogenic, and lactogenic effects were observed after 1 wk in serum-free medium, fibroblast survival was enhanced significantly when the MFC were cultured within the RBM. Taken together, this in vitro model effectively reconstitutes a physiologically relevant three-dimensional microenvironment for MEC and MFC, and seems ideal for studying the locally derived factors that regulate the developmental fate of the epithelial and fibroblast compartments of the mammary gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azzarone, B.; Mareel, M.; Billard, C.; Scemama, P.; Chaponnier, C.; Macieira-Coelho, A. Abnormal properties of skin fibroblasts from patients with breast cancer. Int. J. Cancer 33:759–764; 1984.

    PubMed  CAS  Google Scholar 

  • Barraclough, R.; Fernig, D. G.; Rudland, P. S.; Smith, J. A. Synthesis of basic fibroblast growth factor upon differentiation of rat mammary epithelial to myoepithelial-like cells in culture. J. Cell. Physiol. 144:333–344; 1990.

    PubMed  CAS  Google Scholar 

  • Beck, J. C.; Hosick, H. L. Growth of mouse mammary epithelium in response to serum-free media conditioned by mammary adipose tissue. Cell Biol. Int. Rep. 12:85–97; 1988.

    PubMed  CAS  Google Scholar 

  • Beerli, R. R.; Hynes, N. F. Epidermal growth factor-related peptides activate distinct subsets of ErbB receptors and differ in their biological activities. J. Biol. Chem. 271:6071–6076; 1996.

    PubMed  CAS  Google Scholar 

  • Bocchinfuso, W. P.; Korach, K. S. Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J. Mammary Gland Biol. Neoplasia 2:323–334; 1997.

    PubMed  CAS  Google Scholar 

  • Borellini, F.; Oka, T. Growth control and differentiation in mammary epithelial cells. Environ. Health Perspect. 80:85–99; 1989.

    PubMed  CAS  Google Scholar 

  • Cardiff, R. D.; Wellings, S. R. The comparative pathology of human and mouse mammary glands. J. Mammary Gland Biol. Neoplasia 4:105–122; 1999.

    PubMed  CAS  Google Scholar 

  • Coleman-Krnacik, S.; Rosen, J. M. Differential temporal and spatial gene expression of fibroblast growth factor family members during mouse mammary gland development. Mol. Endocrinol. 8:218–229; 1994.

    PubMed  CAS  Google Scholar 

  • Cooke, P. S.; Buchanan, D. L.; Lubahn, D. B.; Cunha, G. R. Mechanism of estrogen action: lessons from the estrogen receptor-α knockout mouse. Biol. Reprod. 59:470–475; 1998.

    PubMed  CAS  Google Scholar 

  • Cotran, R. S.; Kumar, V.; Robbins, S. L. The breast. In: Cotran, R. S.; Kumar, V., Robbins, S. L., ed. Robinsons pathologic basis of disease. Philadelphia, PA: W. B. Saunders; 1989:1181–1204.

    Google Scholar 

  • Cunha, G. R.; Young, P.; Christov, K.; Guzman, R.; Nandi, S.; Talamantes, F.; Thordarson, G. Mammary phenotypic expression induced in epidermal cells by embryonic mammary mesenchyme. Acta Anat. 152:195–204; 1995.

    PubMed  CAS  Google Scholar 

  • Cunha, G. R.; Young, P.; Hamamoto, S.; Guzman, R.; Nandi, S. Developmental response of adult mammary epithelial cells to various fetal and neonatal mesenchymes. Epith. Cell Biol. 1:105–118; 1992.

    CAS  Google Scholar 

  • Dabbous, M. K.; Haney, L.; Carter, L. M.; Paul, A. K.; Reger, J. Heterogeneity of fibroblast response in host-tumor cell-cell interactions in metastatic tumors. J. Cell. Biochem. 35:333–344; 1987.

    PubMed  CAS  Google Scholar 

  • Darcy, K. M.; Black, J. D.; Hahm, H. A.; Ip, M. M. Mammary organoids from immature virgin rats undergo ductal and alveolar morphogenesis when grown within a reconstituted basement membrane. Exp. Cell Res. 196:49–65; 1991.

    PubMed  CAS  Google Scholar 

  • Darcy, K. M.; Shoemaker, S. F.; Lee, P.-P. H.; Ganis, B. A.; Ip, M. M. Hydrocortisone and progesterone regulation of the proliferation, morphogenesis, and functional differentiation of normal rat mammary epithelial cells in three dimensional primary culture. J. Cell. Physiol. 163:365–379; 1995a.

    PubMed  CAS  Google Scholar 

  • Darcy, K. M.; Shoemaker, S. F.; Lee, P.-P. H.; Vaughan, M. M.; Black, J. D.; Ip, M. M. Prolactin and epidermal growth factor regulation of the proliferation, morphogenesis, and functional differentiation of normal rat mammary epithelial cells in three dimensional primary culture. J. Cell. Physiol. 163:346–364; 1995b.

    PubMed  CAS  Google Scholar 

  • Darcy, K. M.; Wohlhueter, A. L.; Zangani, D., et al. Selective changes in EGF receptor expression and function during the proliferation, differentiation and apoptosis of mammary epithelial cells. Eur. J. Cell Biol. 78:511–523; 1999.

    PubMed  CAS  Google Scholar 

  • Dunbar, M. E.; Wysolmerski, J. J. Parathyroid hormone-related protein: a developmental regulatory molecular necessary for mammary gland development. J. Mammary Gland Biol. Neoplasia 4:21–34; 1999.

    PubMed  CAS  Google Scholar 

  • Durning, P.; Schor, S. L.; Sellwood, R. A. S. Fibroblasts from patients with breast cancer show abnormal migratory behaviour in vitro. Lancet 2:890–892; 1984.

    PubMed  CAS  Google Scholar 

  • Enami, J.; Enami, S.; Koga, M. Growth of normal and neoplastic mouse mammary epithelial cells in primary culture: stimulation by conditioned medium from mouse mammary fibroblasts. Gann 74:845–853; 1983.

    PubMed  CAS  Google Scholar 

  • Ethier, S. P.; Cundiff, K. C. Importance of extended growth potential and growth factor independence on in vivo neoplastic potential of primary rat mammary carcinoma cells. Cancer Res. 47:5316–5322; 1987.

    PubMed  CAS  Google Scholar 

  • Fernig, D. G.; Smith, J. A.; Rudland, P. S. Relationship of growth factors and differentiation in normal and neoplastic development of the mammary gland. In: Lippman, M.; Dickson, R., ed. Regulatory mechanisms in breast cancer. Boston, MA: Kluwer Academic; 1991:47–78.

    Google Scholar 

  • Grant, D. S.; Kleinman, H. K.; Leblond, C. P.; Inoue, S.; Chung, A. E.; Martin, G. R. The basement-membrane-like matrix of the mouse EHS tumor: II. Immunohistochemical quantitation of six of its components. Am. J. Anat. 174:387–398; 1985.

    PubMed  CAS  Google Scholar 

  • Haggie, J. A.; Sellwood, R. A.; Howell, A.; Birch, J. M.; Schor, S. L. Fibroblasts from relatives of patients with hereditary breast cancer show fetal-like behaviour in vitro. Lancet 1:1455–1457; 1987.

    PubMed  CAS  Google Scholar 

  • Hahm, H. A.; Ip, M. M. Primary culture of normal rat mammary epithelial cells within a basement membrane matrix. I. Regulation of proliferation by hormones and growth factors. In Vitro Cell. Dev. Biol. 26:791–802; 1990.

    PubMed  CAS  Google Scholar 

  • Hahm, H. A.; Ip, M. M.; Darcy, K.; Black, J. D.; Shea, W. K.; Forczek, S.; Yoshimura, M.; Oka, T. Primary culture of normal rat mammary epithelial cells within a basement membrane matrix. II. Functional differentiation under serum-free conditions. In Vitro Cell. Dev. Biol. 26:803–814; 1990.

    PubMed  CAS  Google Scholar 

  • Hamburger, A. W.; Yoo, J. Y. Phosphatidylinositol 3-kinase mediates heregulin-induced growth inhibition in human epithelial cells. Anticancer Res. 17:2197–2200; 1997.

    PubMed  CAS  Google Scholar 

  • Haslam, S. Z. Mammary fibroblast influence on normal mouse mammary epithelial cell responses to estrogen in vitro. Cancer Res. 46:310–316; 1986.

    PubMed  CAS  Google Scholar 

  • Haslam, S. Z.; Counterman, L. J. Mammary stroma modulates hormonal responsiveness of mammary epitheliumin vitro in the mouse. Endocrinology 129:2017–2023; 1991.

    PubMed  CAS  Google Scholar 

  • Haslam, S. Z.; Levely, M. L. Estrogen responsiveness of normal mouse mammary cells in primary cell culture: association of mammary fibroblasts with estrogenic regulation of progesterone receptors. Endocrinology 116:1835–1844; 1985.

    PubMed  CAS  Google Scholar 

  • Herrington, E. E.; Ram, T. G.; Salomon, D. S.; Johnson, G. R.; Gullick, W. J.; Kenney, N.; Hosick, H. L. Expression of epidermal growth factor-related proteins in the aged adult mouse mammary gland and their relationship to tumorigenesis. J. Cell. Physiol. 170:47–56; 1997.

    PubMed  CAS  Google Scholar 

  • Horgan, K.; Jones, D. L.; Mansel, R. E. Mitogenicity of human fibroblasts in vivo for human breast cancer cells. Br. J. Surg. 74:227–229; 1987.

    PubMed  CAS  Google Scholar 

  • Hovey, R. C.; Davey, H. W.; Mackenzie, D. D. S.; McFadden, T. B. Ontogeny and epithelial-stromal interactions regulate IGF expression in the ovine mammary gland. Mol. Cell. Endocrinol. 136:139–144; 1998.

    PubMed  CAS  Google Scholar 

  • Hovey, R. C.; McFadden, T. B.; Akers, R. M. Regulation of mammary gland growth and morphogenesis by the mammary fat pad: a species comparison. J. Mammary Gland Biol. Neoplasia 4:53–68; 1999.

    PubMed  CAS  Google Scholar 

  • Howard, E. F.; Scott, V. F.; Bennett, C. E. Stimulation of thymidine uptake and cell proliferation in mouse embryo fibroblasts by conditioned medium from mammary cells in culture. Cancer Res. 36:4543–4551; 1976.

    PubMed  CAS  Google Scholar 

  • Howlett, A. R.; Bissell, M. J. The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epith. Cell Biol. 2:79–89; 1993.

    CAS  Google Scholar 

  • Humphreys, R. C.; Lydon, J. P.; O'Malley, B. W.; Rosen, J. M. Use of PRKO mice to study the role of progesterone receptor in mammary gland development. J. Mammary Gland Biol. Neoplasia 2:343–354; 1997.

    PubMed  CAS  Google Scholar 

  • Imagawa, W.; Bandyopadhyay, G. K.; Nandi, S. Regulation of mammary epithelial cell growth in mice and rats. Endocrine Rev. 90:494–523; 1990.

    Article  Google Scholar 

  • Imagawa, W.; Cunha, G. R.; Young, P.; Nandi, S. Keratinocyte growth factor and acidic fibroblast growth factor are mitogens for primary cultures of mammary epithelium. Biochem. Biophys. Res. Commun. 204:1165–1169; 1994a.

    PubMed  CAS  Google Scholar 

  • Imagawa, W.; Yang, J.; Guzman, R.; Nandi, S. Control of mammary gland development. In: Knobil, E.; Neill, J. D., ed. The physiology of reproduction. New York: Raven Press; 1994b:1033–1063.

    Google Scholar 

  • Inoue, S.; Leblond, C. P. The basement-membrane-like matrix of the mouse EHS tumor. I. Ultrastructure. Am. J. Anat. 174:373–386; 1985.

    PubMed  CAS  Google Scholar 

  • Ip, M. M.; Darcy, K. M. Three-dimensional mammary primary culture model systems. J. Mammary Gland Biol. Neoplasia 1:91–110; 1996.

    PubMed  CAS  Google Scholar 

  • Ip, M. M.; Masso-Welch, P. A.; Shoemaker, S. F.; Shea-Eaton, W. K.; Ip, C. Conjugated linoleic acid inhibits proliferation and induces apoptosis of normal rat mammary epithelial cells in primary culture. Exp. Cell Res. 250:22–34; 1999.

    PubMed  CAS  Google Scholar 

  • Ip, M. M.; Shoemaker, S. F.; Darcy, K. M. Regulation of rat mammary epithelial cell proliferation and differentiation by tumor necrosis factor alpha. Endocrinology 130:2833–2844; 1992.

    PubMed  CAS  Google Scholar 

  • Jones, F. E.; Jerry, D. J.; Guarino, B. C.; Andrews, G. C.; Stern, D. F. Heregulin inducesin vivo proliferation and differentiation of mammary epithelium into secretory lobuloalveoli. Cell Growth Differ. 7:1031–1038; 1996.

    PubMed  CAS  Google Scholar 

  • Kanazawa, T.; Hosick, H. L. Transformed growth phenotype of mouse mammary epithelium in primary culture induced by specific fetal mesenchymes. J. Cell. Physiol. 153:381–391; 1992.

    PubMed  CAS  Google Scholar 

  • Kimata, K.; Sakakura, T.; Inaguma, Y.; Kato, M.; Nishizuka, Y. Participation of two different mesenchymes in the developing mouse mammary gland: synthesis of basement membrane components by fat pad precursor cells. J. Embryol. Exp. Morph. 89:243–257; 1985.

    PubMed  CAS  Google Scholar 

  • Kleinman, H. K.; McGarvey, M. L.; Hassell, J. R.; Martin, G. R. Formation of a supramolecular complex is involved in the reconstitution of basement membrane components. Biochemistry 22:4969–4974; 1983.

    PubMed  CAS  Google Scholar 

  • Kleinman, H. K.; McGarvey, M. L.; Hassell, J. R.; Star, V. L.; Cannon, F. B.; Laurie, G. W.; Martin, G. R. Basement membrane complexes with biological activity. Biochemistry 25:312–318; 1986.

    PubMed  CAS  Google Scholar 

  • Kleinman, H. K.; McGarvey, M. L.; Liotta, L. A.; Robey, P. G.; Tryggyason, K.; Martin, G. R. Isolation and characterization of type IV procollagen, laminin and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21:6188–6193; 1982.

    PubMed  CAS  Google Scholar 

  • Kratochwil, K. Organ specificity in mesenchyme induction demonstrated in the embryonic development of the mammary gland of the mouse. Dev. Biol. 20:46–71; 1969.

    PubMed  CAS  Google Scholar 

  • Kratochwil, K. Epithelium-mesenchyme interaction in the fetal mammary gland. In: Medina, D.; Kidwell, W.; Heppner, G.; Anderson, E. Cellular and molecular biology of mammary cancer. New York: Plenum Press; 1987:67–80.

    Google Scholar 

  • Levine, J. F.; Stockdale, F. E. 3T3-L1 adipocytes promote the growth of mammary epithelium. Exp. Cell. Res. 151:112–122; 1984.

    PubMed  CAS  Google Scholar 

  • Levine, J. F.; Stockdale, F. E. Cell-cell interactions promote mammary epithelial cell differentiation. J. Cell Biol. 100:1415–1422; 1985.

    PubMed  CAS  Google Scholar 

  • Manni, A.; Wei, L.; Badger, B.; Zaenglein, A.; Leighton, J.; Shimasaki, S.; Ling, N. Expression of messenger RNA for insulin-like growth factors and insulin-like growth factor binding proteins by experimental breast cancer and normal breast tissue in vivo. Endocrinology 130:1744–1746; 1992.

    PubMed  CAS  Google Scholar 

  • Marcotty, C.; Frankenne, F.; Meuris, S.; Hennen, G. Immunolocalization and expression of insulin-like growth factor I (IGF-I) in the mammary gland during rat gestation and lactation. Mol. Cell. Endocrinol. 99:237–243; 1994.

    PubMed  CAS  Google Scholar 

  • Masso-Welch, P. A.; Darcy, K. M.; Stangle-Castor, N. C.; Ip, M. M. A developmental atlas of rat mammary gland histology. J. Mammary Gland Biol. Neoplasia, 5:165–186; 2000.

    PubMed  CAS  Google Scholar 

  • Masso-Welch, P. A.; Verstovsek, G.; Ip, M. M. Alterations in the expression and localization of protein kinase C isoforms during mammary gland differentiation. Eur. J. Cell Biol. 78:497–510; 1999.

    PubMed  CAS  Google Scholar 

  • Matsumoto-Taniura, N.; Matsumoto, K.; Nakamura, T. Prostaglandin production in mouse mammary tumour cells confers invasive growth potential by inducing hepatocyte growth factor in stromal fibroblasts. Br. J. Cancer 81:194–202; 1999.

    PubMed  CAS  Google Scholar 

  • McGrath, C. M. Augmentation of the response of normal mammary epithelial cells to estradiol by mammary stroma. Cancer Res. 43:1355–1360; 1983.

    PubMed  CAS  Google Scholar 

  • Merlo, G. R.; Graus-Porta, D.; Cella, N.; Marte, B. M.; Taverna, D.; Hynes, N. E. Growth, differentiation and survival of HC11 mammary epithelial cells: diverse effects of receptor tyrosine kinase-activating peptide growth factors. Eur. J. Cell Biol. 70:97–105; 1996.

    PubMed  CAS  Google Scholar 

  • Monaghan, P.; Warburton, M. J.; Perusinghe, N.; Rudland, P. S. Topographical arrangement of basement membrane proteins in lactating rat mammary gland: comparison of the distribution of type IV collagen, laminin, fibronectin, and Thy-1 at the ultrastructural level. Proc. Natl. Acad. Sci. USA 80:3344–3348; 1983.

    PubMed  CAS  Google Scholar 

  • Niranjan, B.; Buluwela, L.; Yant, J., et al. HGF/SF: a potent cytokine for mammary growth, morphogenesis and development. Development 121:2897–2908; 1995.

    PubMed  CAS  Google Scholar 

  • Normanno, N.; Ciardiello, F.; Brandt, R.; Salomon, D. S. Epidermal growth factor-related peptides in the pathogenesis of human breast cancer. Breast Cancer Res. Treat. 29:11–27; 1994.

    PubMed  CAS  Google Scholar 

  • Oka, T.; Yoshimura, M.; Lavandero, S.; Wada, K.; Ohba, Y. Control of growth and differentiation of the mammary gland by growth factors. J. Dairy Sci. 74:2788–2800; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Panico, L.; D'Antonio, A.; Salvatore, G., et al. Differential immunohistochemical detection of transforming growth factor alpha, amphiregulin and cripto in human normal and malignant breast tissues. Int. J. Cancer 65:51–56; 1996.

    PubMed  CAS  Google Scholar 

  • Pepper, M. S.; Soriano, J. V.; Menoud, P. A.; Sappino, A. P.; Orci, L.; Montesano, R. Modulation of hepatocyte growth factor and c-met in the rat mammary gland during pregnancy, lactation, and involution. Exp. Cell Res. 219:204–210; 1995.

    PubMed  CAS  Google Scholar 

  • Perachiotti, A.; Darbre, P. D. Coculture inserts possess an intrinsic ability to alter growth regulation of human breast cancer cells. Exp. Cell Res. 213:404–411; 1994.

    PubMed  CAS  Google Scholar 

  • Pinkas-Kramarski, R.; Shelly, M.; Guarino, B. C., et al. ErbB tyrosine kinases and the two neuregulin families constitute a ligand-receptor network. Mol. Cell Biol. 18:6090–6101; 1998.

    PubMed  CAS  Google Scholar 

  • Rahmoune, H.; Chen, H. L.; Gallagher, J. T.; Rudland, P. S.; Fernig, D. G. Interaction of heparan sulfate from mammary cells with acidic fibroblast growth factor (FGF) and basic FGF. Regulation of the activity of basic FGF by high and low affinity binding sites in heparan sulfate. J. Biol. Chem. 273:7303–7310; 1998.

    PubMed  CAS  Google Scholar 

  • Ram, T. G.; Kokeny, K. E.; Dilts, C. A.; Ethier, S. P. Mitogenic activity of neu differentiation factor/heregulin mimics that of epidermal growth factor and insulin-like growth factor-I in human mammary epithelial cells. J. Cell. Physiol. 163:589–596; 1995.

    PubMed  CAS  Google Scholar 

  • Reichmann, E.; Ball, R.; Groner, B.; Friis, R. R. New mammary epithelial and fibroblastic cell clones in coculture form structures competent to differentiate functionally. J. Cell. Biol. 108:1127–1138; 1989.

    PubMed  CAS  Google Scholar 

  • Richert, M. M.; Wood, T. L. The insulin-like growth factors (IGF) and IGF type I receptor during postnatal growth of the murine mammary gland: sites of messenger ribonucleic acid expression and potential functions. Endocrinology 140:454–461; 1999.

    PubMed  CAS  Google Scholar 

  • Rivera, E. M.; Alston-Mills, B. Intrinsic differences in the transplantability and outgrowth potential of DMBA-induced rat mammary tumors. Int. J. Cancer 44:1048–1051; 1989.

    PubMed  CAS  Google Scholar 

  • Rivera, E. M.; Vijayaraghavan, S. Proliferation of ductal outgrowths by carcinogen-induced rat mammary tumors in gland-free mammary fat pads. J. Natl. Cancer Inst. 69:517–525; 1982.

    PubMed  CAS  Google Scholar 

  • Robinson, G. W.; Hennighausen, L. Inhibins and activins regulate mammary epithelial cell differentiation through mesenchymal-epithelial interactions. Development 124:2701–2708; 1997.

    PubMed  CAS  Google Scholar 

  • Robinson, G. W.; Karpf, A. B. C.; Kratochwil, K. Regulation of mammary gland development by tissue interaction. J. Mammary Gland Biol. Neoplasia 4:9–19; 1999.

    PubMed  CAS  Google Scholar 

  • Ronnov-Jessen, L.; Petersen, O. W.; Bissell, M. J. Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol. Rev. 76:69–125; 1996.

    PubMed  CAS  Google Scholar 

  • Rudland, P. S.; Twiston Davies, A. C.; Tsao, S.-W. Rat mammary preadipocytes in culture produce a trophic agent for mammary epithelium prostaglandin E2. J. Cell. Physiol. 120:364–376; 1984.

    PubMed  CAS  Google Scholar 

  • Sakakura, T. New aspects of stromal-parenchyma relations in mammary gland differentiation. Int. Rev. Cytol. 125:165–202; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Sakakura, T.; Nishizuka, Y.; Dawe, C. J. Mesenchyme-dependent morphogenesis and epithelium-specific cytodifferentiation in mouse mammary gland. Science 194:1439–1441; 1976.

    PubMed  CAS  Google Scholar 

  • Sakakura, T.; Nishizuka, Y.; Dawe, C. J. Capacity of mammary fat pads of adult C3H/HeMs mice to interact morphogenetically with fetal mammary epithelium. J. Natl. Cancer Inst. 63:733–736; 1979a.

    PubMed  CAS  Google Scholar 

  • Sakakura, T.; Sakagami, Y.; Nishizuka, Y. Persistence of responsiveness of adult mouse mammary gland to induction by embryonic mesenchyme. Dev. Biol. 72:201–210; 1979b.

    PubMed  CAS  Google Scholar 

  • Sakakura, T.; Sakagami, Y.; Nishizuka, Y. Dual origin of mesenchymal tissues participating in mouse mammary gland embryogenesis. Dev. Biol. 91:202–207; 1982.

    PubMed  CAS  Google Scholar 

  • Sasaki, M.; Enami, J. Mammary fibroblast-derived hepatocyte growth factor and mammogenic hormones stimulate the growth of mouse mammary epithelial cells in primary culture. Endocr. J. 46:359–366; 1999.

    PubMed  CAS  Google Scholar 

  • Schoenenberger, C.-A.; Zuk, A.; Groner, B.; Jones, W.; Andres, A.-C. Induction of the endogenous whey acidic protein (Wap) gene and a Wapmyc hybrid gene in primary murine mammary organoids. Dev. Biol. 139:327–337; 1990.

    PubMed  CAS  Google Scholar 

  • Schor, S. L.; Schor, A. M.; Durning, P.; Rushton, G. Skin fibroblasts obtained from cancer patients display foetal-like migratory behaviour on collagen gels. J. Cell Sci. 73:235–244; 1985a.

    PubMed  CAS  Google Scholar 

  • Schor, S. L.; Schor, A. M.; Grey, A. M.; Rushton, G. Foetal and cancer patient fibroblasts produce an autocrine migration-stimulating factor not made by normal adult cells. J. Cell Sci. 90:391–399; 1988.

    PubMed  CAS  Google Scholar 

  • Schor, S. L.; Schor, A. M.; Rushton, G.; Smith, L. Adult, foetal and transformed fibroblasts display different migratory phenotypes on collagen gels: evidence for an isoformic transition during foetal development. J. Cell Sci. 73:221–234; 1985b.

    PubMed  CAS  Google Scholar 

  • Schroeder, J. A.; Lee, D. C. Dynamic expression and activation of ErbB receptors in the developing mouse mammary gland. Cell Growth Differ. 9:451–464; 1998.

    PubMed  CAS  Google Scholar 

  • Sebastian, J.; Richards, R. G.; Walker, M. P., et al. Activation and function of the epidermal growth factor receptor and erbB-2 during mammary gland morphogenesis. Cell Growth Differ. 9:777–785; 1998.

    PubMed  CAS  Google Scholar 

  • Silberstein, G. B.; Daniel, C. W. Glycosaminoglycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Dev. Biol. 90:215–222; 1982.

    PubMed  CAS  Google Scholar 

  • Smith, J. A.; Winslow, D. P.; Rudland, P. S. Different growth factors stimulate cell division of rat mammary epithelial myoepithelial, and stromal cell lines in culture. J. Cell Physiol. 119:320–326; 1984.

    PubMed  CAS  Google Scholar 

  • Soriano, J. V.; Pepper, M. S.; Nakamura, T.; Orci, L.; Montesano, R. Hepatocyte growth factor stimulates extensive development of branching duct-like structures by cloned mammary gland epithelial cells. J. Cell Sci. 108:413–430; 1995.

    PubMed  CAS  Google Scholar 

  • Spanakis, E.; Brouty-Boye, D. Quantitative variation of proto-oncogene and cytokine gene expression in isolated breast fibroblasts. Int. J. Cancer 61:698–705; 1995.

    PubMed  CAS  Google Scholar 

  • Tabar, L.; Fagerberg, G.; Chen, H. H.; Duffy, S. W.; Gad, A. Tumour development, histology and grade of breast cancers: prognosis and progression. Int. J. Cancer 66:413–419; 1996.

    PubMed  CAS  Google Scholar 

  • Taga, M.; Sakakura, T.; Oka, T. Identification and partial characterization of mesenchyme-derived growth factor that stimulates proliferation and inhibits functional differentiation of mouse mammary epithelium in culture. Endocrinol. Jpn. 36:559–568; 1989.

    PubMed  CAS  Google Scholar 

  • Taverna, D.; Groner, B.; Hynes, N. E. Epidermal growth factor receptor, platelet-derived growth factor receptor, and c-erbB-2 receptor activation all promote growth but have distinctive effects upon mouse mammary epithelial cell differentiation. Cell Growth Differ. 2:145–154; 1991.

    PubMed  CAS  Google Scholar 

  • Taylor-Papadimitriou, J.; Shearer, M.; Stoker, M. G. P. Growth requirements of human mammary epithelial cells in culture. Int. J. Cancer 20:903–908; 1977.

    PubMed  CAS  Google Scholar 

  • Ulich, T. R.; Yi, E. S.; Cardiff, R.; Yin, S.; Bikhazi, N.; Biltz, R.; Morris, C. F.; Pierce, G. F. Keratinocyte growth factor is a growth factor for mammary epithelium in vivo. The mammary epithelium of lactating rats is resistant to the proliferative action of keratinocyte growth factor. Am. J. Pathol. 144:862–868; 1994.

    PubMed  CAS  Google Scholar 

  • Visser, A. S.; Dingemans, K. P.; Prop, F. J. Morphogenesis in mammary gland cultures. Occurrence of tubular structures in combined cultures of fibroblastic and normal epithelial cells. Cell. Biol. Int. Rep. 5:247–251; 1981.

    PubMed  CAS  Google Scholar 

  • Vukicevic, S.; Kleinman, H. K.; Luyten, F. P.; Roberts, A. B.; Roche, N. S.; Reddi, A. H. Identification of multiple active growth factors in basement membrane matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res. 202:1–8; 1992.

    PubMed  CAS  Google Scholar 

  • Wang, S.; Haslam, S. Z. Serum-free primary culture of normal mouse mmary epithelial and stromal cells. In Vitro Cell. Dev. Biol. 30A:859–866; 1994.

    CAS  Google Scholar 

  • Wang, Y.; Selden, A. C.; Morgan, N.; Stamp, G. W.; Hodgson, H. J. Hepatocyte growth factor/scatter factor expression in human mammary epithelium. Am. J. Pathol. 144:675–682; 1994.

    PubMed  CAS  Google Scholar 

  • Warburton, M. J.; Mitchell, D.; Ormerod, E. J.; Rudland, P. Distribution of myoepithelial cells and basement membrane proteins in the resting, pregnant, lactating, and involuting rat mammary gland. J. Histochem. Cytochem. 30:667–676; 1982.

    PubMed  CAS  Google Scholar 

  • Warburton, M. J. Distribution of entactin in the basement membrane of the rat mammary gland. Exp. Cell Res. 152:240–254; 1984.

    PubMed  CAS  Google Scholar 

  • Weins, D.; Park, C. S.; Stockdale, F. E. Milk protein expression and ductal morphogenesis in the mammary glandin vitro: hormone-dependent and-independent phases of adipocyte-mammary epithelial cells interactions. Dev. Biol. 120:245–258; 1987.

    Google Scholar 

  • Welsch, C. W.; O'Connor, D. H.; Aylsworth, C. F.; Sheffield, L. G. Normal but not carcinomatous primary rat mammary epithelium: readily transplanted to and maintained in the athymic nude mouse. J. Natl. Cancer Inst. 78:557–565; 1987.

    PubMed  CAS  Google Scholar 

  • Wilson, S. E.; Weng, J.; Chwang, E. L.; Gollahon, L.; Leitch, A. M.; Shay, J. W. Hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), and their receptors in human breast cells and tissues: alternative receptors. Cell Mol. Biol. Res. 40:337–350; 1994.

    PubMed  CAS  Google Scholar 

  • Yang, J.; Guzman, R.; Richards, J.; Imagawa, W.; McCormick, K.; Nandi, S. Growth factor- and cyclic nucleotide-induced proliferation of normal and malignant mammary epithelial cells in primary culture. Endocrinology 107:35–41; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y. M.; Spitzer, E.; Meyer, D., et al. Sequential requirement of hepatocyte growth factor and neuregulin in the morphogenesis and differentiation of the mammary gland. J. Cell Biol. 131:215–226; 1995.

    PubMed  CAS  Google Scholar 

  • Zangani, D.; Darcy, K. M.; Shoemaker, S.; Ip, M. M. Adipocyte-epithelial interactions regulate the in vitro development of normal mammary epithelial cells. Exp. Cell Res. 247:399–409; 1999.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margot M. Ip.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darcy, K.M., Zangani, D., Shea-Eaton, W. et al. Mammary fibroblasts stimulate growth, alveolar morphogenesis, and functional differentiation of normal rat mammary epithelial cells. In Vitro Cell.Dev.Biol.-Animal 36, 578–592 (2000). https://doi.org/10.1007/BF02577526

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02577526

Key words

Navigation