Skip to main content
Log in

Treatment of acute spinal cord injuries: comparison of thyrotropin-releasing hormone and nimodipine

  • Published:
Research in Experimental Medicine

Summary

The effects of nimodipine and thyrotropin-releasing hormone (TRH) were compared in a clip-compression model of experimental spinal cord injuries (SCI) in rats. Thirty rats received a 50-g clip-compression injury on the cord at T9. Ten rats were given 0.02 mg/kg nimodipine and dextran 40 (3ml) i.v. 1h after injury. Ten rats were given 2 mg/kg TRH and dextran 40 (3ml) i.v. 1h after injury followed by 1 mg/kg per hour for 4h. The remaining ten rats were given only saline. TRH treatment significantly improved somatosensory-evoked potentials (SEPs) and mean arterial blood pressures (MABPs), whereas nimodipine treatment had no effect on these variables (Fisher's exact test (P<0.01).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson DK, Means ED (1983) Free radical induced lipid peroxidation in spinal cord. FeCl2 induction and protection with antioxidants. Neurochem Pathol 1:249–264

    CAS  Google Scholar 

  2. Anderson DK, Demediuk P, Saunders DR (1985) Spinal cord injury and protection. Ann Emerg Med 14:147–152

    Article  Google Scholar 

  3. Black P, Markowitz RS, Finkelstein SD (1988) Experimental spinal cord injury: effects ofa calcium channel antagonist (nicardipine). Neurosurgery 22:61–66

    PubMed  CAS  Google Scholar 

  4. Boyer CE, Cooper BR (1982) Thyrotropin releasing hormone in cat spinal cord: excitatory effects, regional distribution and effects of chronic spinal cord lesions. Fed Proc 41:1080

    Google Scholar 

  5. Ceylan S, Kalelioĝlu M, Aktürk G, Aktürk F, Ceylan S (1990) Medical treatment of acute spinal cord injuries. Res Exp Med 190:111–119

    Article  CAS  Google Scholar 

  6. Collins WF (1983) A review and update of experimental and clinical studies of spinal cord injury. Paraplegia 21:204–219

    PubMed  CAS  Google Scholar 

  7. Faden AI (1989) TRH analog YM-14673 improves outcome following traumatic brain and spinal cord injury in rats: dose-response studies. Brain Res 486:228–235

    Article  PubMed  CAS  Google Scholar 

  8. Faden AI, Jacobs TP (1985) Effect of TRH analogs on neurological recovery after experimental spinal trauma. Neurology 35:1331–1334

    PubMed  CAS  Google Scholar 

  9. Faden AI, Jacobs TP, Smith MT (1984) Evaluation of the calcium channel antagonist nimodipine in experimental spinal cord ischemia. J Neurosurg 60:796–799

    PubMed  CAS  Google Scholar 

  10. Faden AI, Jacobs TP, Smith MT (1984) Thyrotropin-releasing hormone in experimental spinal injury: dose response and late treatment. Neurology 34:1280–1284

    PubMed  CAS  Google Scholar 

  11. Faden AI, Hill TG, Kuhek MJ (1986) Changes in TRH immunoreactivity in spinal cord after experimental spinal injury Neuropeptides 7:11–18

    Article  PubMed  CAS  Google Scholar 

  12. Faden AI, Pilotle NS, Burt DR (1986) Experimental spinal cord injury: effects of trauma or ischemia on TRH and muscarinic receptors. Neurology 36:723–726

    PubMed  CAS  Google Scholar 

  13. Faden AI, Yum SW, Lemke M (1990) Effects of TRH-analog treatment on tissue cations, phospholipids and energy metabolism after spinal cord injury. J Pharmacol Exp Ther 255: 608–614

    PubMed  CAS  Google Scholar 

  14. Fehlings MG, Tator CH, Linden RD (1989) The effect of nimodipine and dextran on axonal function and blood flow following experimental spinal cord injury. J Neurosurg 71: 403–416

    PubMed  CAS  Google Scholar 

  15. Ford RW, Malm DN (1986) Failure of nimodipine to nerve acute experimental spinal cord injury. Cent Nerv Syst Trauma 2:9–17

    Google Scholar 

  16. Freedman J, Hokfelt T, Johnson G (1986) Thyrotropin-releasing hormone (TRH) counteracts neuronal damage induced by a substance P antagonist. Exp Brain Res 62:175–178

    Article  PubMed  CAS  Google Scholar 

  17. Gelmers HJ (1982) Effect of nimodipine (Bay e 9736) on postischaemic cerebro vascular reactivity as revealed by measuring regional cerebral blood flow (r CBF) Acta Neurochir 63:283–290

    Article  CAS  Google Scholar 

  18. Griffiths IR (1976) Spinal cord blood flow after acute experimental cord injury in dogs. J Neurol Sci 27:247–259

    Article  PubMed  CAS  Google Scholar 

  19. Guha A, Tator CH, Piper I (1987) Effect of a calcium channel blocker on post-traumatic spinal cord blood flow. J Neurosurg 66:423–430

    PubMed  CAS  Google Scholar 

  20. Hall ED, Wolf DL (1986) A pharmacological analysis of the pathophysiological mechanisms of post-traumatic spinal cord ischemia. J Neurosurg 64:951–961

    PubMed  CAS  Google Scholar 

  21. Hashimoto T, Fukuda N (1990) Effect of thyrotropin-releasing hormone on the time course of neurologic recovery after spinal cord injury in the rat Japan. J Pharmacol 53:479–486

    CAS  Google Scholar 

  22. Hedeman LS, Ranajit S (1974) Studies in experimental spinal cord trauma. II. Comparison of treatment with steroids. Low molecular weight dextran and catecholamine blockade. J. Neurosurg 40:5–53

    Google Scholar 

  23. Hsu Cy, Halushka PV, Hogan EI (1983) Altered synthesis of thromboxane and prostacyclin in spinal cord contusion. Neurology 33 [Suppl] 2: 146

    Google Scholar 

  24. Kunhara M (1985) Role of monoamines in experimental spinal cord injury in rats. Relationship between Na+-K+-ATPase and lipid peroxidation. J Neurosurg 62:743–749

    Article  Google Scholar 

  25. Lux WE, Feuertein G, Faden AI (1983) Alteration of leukotriene D4 hyptension by thyrotropin releasing hormone. Nature 10:301–307

    CAS  Google Scholar 

  26. Manaker S, Winokur A, Rhodes CH (1983) Autoradiographic localization of thyrotropinreleasing hormone (TRH) receptors in human spinal cord Neurology 35:328–332

    Google Scholar 

  27. Nayler WG (1982) Calcium antagonism: a new approach. Clin Exp Pharmacol Physiol [Suppl] 6: 3–13

    CAS  Google Scholar 

  28. Nicoll RA (1978) The action of thyrotropin releasing hormone, substance P and related peptides on frog spinal motorneurons. J Pharmacol Exp Ther 207:817–824

    PubMed  CAS  Google Scholar 

  29. Saunders RD, Anderson DK, Horrocks LA (1980) Arachidonic acid and lipid metabolism following spinal cord trauma. Soc Neurosci Abs 10:998

    Google Scholar 

  30. Sharif NA, Pilotte NS, Burt DR (1983) Biochemical and autoradiographic studies of TRH receptors in sections of rabbit spinal cord. biochem Biophys Res Commun 116:669–674

    Article  PubMed  CAS  Google Scholar 

  31. Stokes BT, Fox P, Hollinden G (1983) Extracellular calcium activity in the injured spinal cord. Exp Neurol 80:561–572

    Article  PubMed  CAS  Google Scholar 

  32. Taylor RL, Burt DR (1982) Species differences in the brain regional distribution of receptor binding for thyrotropin releasing hormone. J Neurochem 38:1649–1656

    Article  PubMed  CAS  Google Scholar 

  33. Young W, Yen V, Blight A (1982) Extracellular calcium ionic activity in experimental spinal cord contusion. Brain Res 253:105–113

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ceylan, S., Ilbay, K., Baykal, S. et al. Treatment of acute spinal cord injuries: comparison of thyrotropin-releasing hormone and nimodipine. Res. Exp. Med. 192, 23–33 (1992). https://doi.org/10.1007/BF02576254

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02576254

Key words

Navigation