Skip to main content
Log in

Thermal conductivity, heat capacity, and compressibility of atactic poly(propylene) under high pressure

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal conductivity λ and the heat capacity per unit volume of atactic poly(propylene) have been measured in the temperature range 90–420 K at pressures up to 1.5 GPa using the transient hot-wire method. The bulk modulus has been measured in the range 200–295 K and up to 0.7 GPa. These data were used to calculate the volume dependence of λ,g=−[∂λ/λ)/(∂V/V)] T , which yielded the following values for the glassy state (T<256 K at atmospheric pressure): 3.80±0.19 at 200 K, 3.74±0.19 at 225 K, 3.90±0.20 at 250 K, 3.77±0.19 at 271 K, and 3.73±0.19 at 297 K. The resultant value forg of the liquid state was 3.61±0.15 at 297 K. Values forg which are calculated at 295 K, using theoretical models of λ(T), agree to within 12% with the experimental value for the glassy state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Andersson and R. G. Ross,Int. J. Thermophys. 15:949 (1994).

    Article  Google Scholar 

  2. S. P. Andersson, O. Andersson, and G. Bäckström,Int. J. Thermophys. 18:209 (1997).

    Article  Google Scholar 

  3. G. A. Slack,Solid State Physics, H. Ehrenreich, F. Seitz, and D. Turnbull, eds. (Academic, New York, 1979), Vol. 34, pp. 1–71.

    Google Scholar 

  4. R. G. Ross, P. Andersson, B. Sundqvist, and G. Bäckström,Rep. Prog. Phys. 47: 1347 (1984).

    Article  ADS  Google Scholar 

  5. O. Sandberg, Ph.D. thesis, (Umea University, Umea, 1980).

  6. O. Andersson and H. Suga,Solid State Commun. 91:985 (1994).

    Article  ADS  Google Scholar 

  7. B. Hakansson, P. Andersson, and G. Bäckstrom,Rev. Sci. Instrum. 59:2269 (1988).

    Article  ADS  Google Scholar 

  8. B. Hakansson and R. G. Ross,J. Appl. Phys. 68:3285 (1990).

    Article  ADS  Google Scholar 

  9. O. Andersson, B. Sundqvist, and G. Bäckstrom,High Press. Res. 10:599 (1992).

    Google Scholar 

  10. A. Lundin, R. G. Ross, and G. Bäckström,High Temp. High Press. 26:477 (1994).

    Google Scholar 

  11. C. J. Tranter,Q. Appl. Math. 4:298 (1946).

    MATH  MathSciNet  Google Scholar 

  12. D. W. van Krevelen,Properties of Polymers (Elsevier, Amsterdam, 1972).

    Google Scholar 

  13. F. D. Murnaghan,Proc. Natl. Acad. Sci. USA 30:244 (1944).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. O. L. Andersson,J. Geophys. Res. 72:3661 (1967).

    Article  ADS  Google Scholar 

  15. O. Andersson,Int. J. Thermophys. 18:195 (1997).

    Article  MathSciNet  Google Scholar 

  16. E. Passaglia and G. M Martin,J. Res. Natl. Bur. Stand. 68A:273 (1964).

    Google Scholar 

  17. P. Andersson and B. Sundqvist,J. Polym. Sci. Polym. Phys. Ed. 13:243 (1975).

    Article  Google Scholar 

  18. V. K. Eiermann,Kolloid-Z, Z 201:3 (1965).

    Article  Google Scholar 

  19. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and T. Y. R. Lee,Thermophysical Properties of Matter (IFI Plenum, New York, 1977), Vol. 13, p. 1488.

    Google Scholar 

  20. J. Brandrup and E. H. Immergut (eds.),Polymer Handbook, 3rd ed. (Wiley, New York, 1989), pp. VI/378-VI/379.

    Google Scholar 

  21. J. E. McKinney and M. Goldstein,J. Res. Natl. Bur. Stand. 78A:331 (1974).

    Google Scholar 

  22. D. G. Cahill and R. O. Pohl,Solid State Commun. 70:927 (1989); D. G. Cahill, S. K. Watson, and R. O. Pohl,Phys. Rev. B 46:6131 (1992).

    Article  ADS  Google Scholar 

  23. A. L. Fetter and J. D. Walecka,Theoretical Mechanics of Particles and Continua (McGraw-Hill, New York, 1980), p. 473.

    MATH  Google Scholar 

  24. M. W. Zemasky, M. M. Abbott, and H. C. Van Ness,Basic Engineering Thermodynamics, 2nd ed. (McGraw-Hill, Tokyo, 1984), p. 260.

    Google Scholar 

  25. D. G. Cahill and R. O. Pohl,Phys. Rev. B 35:4067 (1987).

    Article  ADS  Google Scholar 

  26. A. A. Silano, K. D. Pae, and J. A. Sauer,J. Appl. Phys. 48:4076 (1977).

    Article  ADS  Google Scholar 

  27. R. Berman,Thermal Conduction in Solids (Clarendon, Oxford, 1976).

    Google Scholar 

  28. D. Gerlich and G. A. Slack,J. Phys. Chem. Solids 46:433 (1985).

    Article  ADS  Google Scholar 

  29. J. K. Horrocks and E. Mclaughlin,Trans. Faraday Soc. 56206 (1960); J. K. Horrocks and E. Mclaughlin,Trans. Faraday Soc. 59:1709 (1963).

    Article  Google Scholar 

  30. R. W. Warfield,Makromol. Chem. 175:3285 (1974).

    Article  Google Scholar 

  31. J. Jäckle,Rep. Prog. Phys. 49:171 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, S.P., Andersson, O. Thermal conductivity, heat capacity, and compressibility of atactic poly(propylene) under high pressure. Int J Thermophys 18, 845–864 (1997). https://doi.org/10.1007/BF02575137

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02575137

Key Words

Navigation