Skip to main content
Log in

Thermal diffusivity of the alternative refrigerant R152a

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal diffusivity of R152a was measured by dynamic light scattering. We have developed an apparatus which enables us to apply both homodyne and heterodyne light-scattering techniques allowing a wide region of state to be investigated. A total of 300 data points was obtained along the critical isochore. in both coexisting phases and on seven isotherms with densities and temperatures ranging from 50 to 1000 kg·m−3 and 290 to 425 K, respectively. The uncertainty of the measurements lies between 0.5 and 5%. The thermal-diffusivity values cover a range of over four orders of magnitude and include the region around the vapor-liquid critical point. Other measured properties are temperature, pressure, and refractive index as well as the critical parametersT c andp c .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Wakeham, A. Nagashima, and J. V. Sengers (eds.),Measurement of Transport Properties of Fluids (Blackwell Scientific, Oxford, 1991)

    Google Scholar 

  2. B. J. Berne and R. Pecora,Dynamic Light Scattering (Wiley, New York, 1976).

    Google Scholar 

  3. B. Chu,Laser Light Scattering (Academic, New York, 1974).

    Google Scholar 

  4. R. Pecora,Dynamic Light Scattering, Applications of Photon Correlation Spectroscopy (Plenum, New York, 1985).

    Google Scholar 

  5. E. Reile, P. Jany, and J. Straub,Wärme-Stoffübertragung 18: 99 (1984).

    Article  Google Scholar 

  6. P. Jany and J. Straub,Int. J. Thermophys. 8: 165 (1987).

    Article  Google Scholar 

  7. B. Kruppa and J. Straub,Exp. Therm. Fluid Sci. 6: 28 (1993).

    Article  Google Scholar 

  8. B. Kruppa,Die temperaturleitfähigkeit alternativer Kältemittel in einem weiten Temperatur-und Dichtebereich, Ph.D. thesis, Technical University, Munich, 1993).

    Google Scholar 

  9. B. Kruppa and J. Straub,Int. J. Thermophys. 9: 911 (1988).

    Article  Google Scholar 

  10. E. Jackeman, E. R. Pike, and S. Swain,J. Phys. A 4: 517 (1971).

    Article  ADS  Google Scholar 

  11. V. Degiorgio and L. B. Lastovka,Phys. Rev. A 4: 2033 (1971).

    Article  ADS  Google Scholar 

  12. N. C. Ford,Chem. Seripta 2: 193 (1972).

    Google Scholar 

  13. V. Marx, A. Pruss, and W. Wagner,Fortschritt-Berichte VDI 19: 57 (1992).

    Google Scholar 

  14. B. Saager and J. Fischer,Deutscher Kältle Klimatechswischer Verein e. V. 16: 213 (1989).

    Google Scholar 

  15. J. V. Sengers,Int. J. Thermophys. 6: 203 (1985).

    Article  Google Scholar 

  16. F. J. Wegner,Phys. Rev. B 3: 4529 (1972).

    Article  ADS  Google Scholar 

  17. R. Krauss, V. C. Weiss, T. A. Edison, J. V. Sengers, and K. Stephan,Int. J. Thermophys. 17: 731 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruppa, B., Straub, J. Thermal diffusivity of the alternative refrigerant R152a. Int J Thermophys 18, 807–823 (1997). https://doi.org/10.1007/BF02575135

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02575135

Key Words

Navigation