Skip to main content
Log in

A vibrating tube flow densitometer for measurements with corrosive solutions at temperatures up to 723 K and pressures up to 40 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A new version of a vibrating tube flow densitometer has been designed permitting measurements of density differences between two fluids in the temperature range from 298 to 723 K and at pressures up to 40 MPa. The instrument is equipped with a Pt/Rh20 vibrating tube (1.6-mm o.d.) and a Pt/Rh10 transporting tube (1.2-mm o.d.) permitting measurements with highly corrosive liquids. The period of oscillation of the tube is about 7.5 ms, with a typical stability better than 10−4% over about a 1-h period over the entire temperature interval. The calibration constantK at room temperature is about 530 kg·m−3·ms−2, with a temperature coefficient of approximately −0.13kg·m−3·ms−2·K−1, and is practically pressure independent. It can be determined by calibration with a reproducibility generally better than 0.1%. The instrument was tested with NaCl(aq) solutions in the temperature range from 373 to 690 K for density differences between sample and reference liquid ranging from 200 to 2 kg·m−3; the corresponding errors are believed to be below 0.3 and 5%, respectively. A highly automated temperature control maintains the temperature of the tube stable to within ±0.02 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Kratky, H. Leopold, and H. Stabinger,Z. Agew. Phys. 27:273 (1969).

    Google Scholar 

  2. D. R. Defibaugh and G. Morrison,J. Chem. Eng. Data 37:107 (1992).

    Article  Google Scholar 

  3. L. A. Galicia-Luna, D. Richon, and H. Renon,J. Chem. Eng. Data. 39:424 (1994).

    Article  Google Scholar 

  4. C. Bouchot, Ph.D. thesis (École de Mines, Paris, 1995).

  5. J. M. Simonson, C. S. Oakes, and R. J. Bodnar,J. Chem. Thermodyn. 26:345 (1994).

    Article  Google Scholar 

  6. C. S. Oakes, J. M. Simonson, and R. J. Bodnar,J. Solut. Chem. 24:897 (1995).

    Article  Google Scholar 

  7. H. J. Albert and R. H. Wood,Rev. Sci. Instrum. 55:589 (1984).

    Article  ADS  Google Scholar 

  8. V. Majer, J. A. Gates, A. Inglese, and R. H. Wood,J. Chem. Thermodyn. 20:949 (1988).

    Article  Google Scholar 

  9. R. H. Wood, C. W. Buzzard, and V. Majer,Rev. Sci Instrum. 60:493 (1989).

    Article  ADS  Google Scholar 

  10. V. Majer, A. Inglese, and R. H. Wood,J. Chem. Thermodyn. 21:321 (1989).

    Article  Google Scholar 

  11. V. Majer, A. Inglese, and R. H. Wood,J. Chem. Thermodyn. 21:397 (1989).

    Article  Google Scholar 

  12. H. R. Corti, R. F. Prini, and F. Svarz,J. Solut. Chem. 19:793 (1990).

    Article  Google Scholar 

  13. R. F. Chang, and M. R. Moldover,Rev. Sci. Instrum. 67:in press (1996).

  14. L. Hnedkovsky, I. Cibulka, and V. Hynek, in preparation.

  15. V. Majer, R. Crovetto, and R. H. Wood,J. Chem. Thermodyn. 23:333 (1991).

    Article  Google Scholar 

  16. R. Crovetto, R. H. Wood, and V. Majer,J. Chem. Thermodyn. 23:1139 (1991).

    Google Scholar 

  17. V. Majer, Lu Hui, R. Crovetto, and R. H. Wood,J. Chem. Thermodyn. 23:213 (1991).

    Article  Google Scholar 

  18. V. Majer, Lu Hui, R. Crovetto, R. H. Crovetto, and R. H. Wood,J. Chem. Thermodyn. 23:365 (1991).

    Google Scholar 

  19. V. Majer and R. H. Wood,J. Chem. Thermodyn. 26:1143 (1994).

    Article  Google Scholar 

  20. L. Hnedkovsky, V. Majer, and R. H. Wood,J. Chem. Thermodyn. 27:801 (1995).

    Article  Google Scholar 

  21. L. Hnedkovsky, R. H. Wood, and V. Majer,J. Chem. Thermodyn. 26:125 (1996).

    Article  Google Scholar 

  22. D. G. Archer,J. Phys. Chem. Ref. Data 21:793 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hynek, V., Obšil, M., Quint, J. et al. A vibrating tube flow densitometer for measurements with corrosive solutions at temperatures up to 723 K and pressures up to 40 MPa. Int J Thermophys 18, 719–732 (1997). https://doi.org/10.1007/BF02575130

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02575130

Key Words

Navigation