Skip to main content
Log in

Epidemiology theory and disturbance spread on landscapes

  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abtract

Epidemiology models, modified to include landscape pattern, are used to examine the relative importance of landscape geometry and disturbance dynamics in determining the spatial extent of a disturbance, such as a fire. The models indicate that, except for very small values for the probability of spread, a disturbance tends to propagate to all susceptible sites that can be reached. Therefore, spatial pattern, rather than disturbance dynamic, will ordinarily determine the total extent of a single disturbance event. The models also indicate that a single disturbance will seldom become endemic,i.e., always present on the landscape. However, increasing disturbance frequency can lead to a landscape in which the proportion of susceptible, disturbed, and recovering sites are relatively constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Bailey, N. T. J. 1965. The simulation of stochastic epidemics in two dimensions. Fifth Berkeley Symposium Volume IV pp. 237–257.

    Google Scholar 

  • Bailey, N. T. J., 1975. The mathematical theory of infectious diseases and its applications.—Hafner Press, New York.

    Google Scholar 

  • Ball, F. G. 1985. Spatial models for the spread and control of rabies incorporating group size.In Population Dynamics of Rabies in Wildlife. pp. 197–222. Edited by P. J. Bacon. Academic Press, New York

    Google Scholar 

  • Brower, R. C., Furman, M.A. and Moshe, M. 1978. Critical exponents for the Reggeon quantum spin model. Phys. Letters B 76: 213–219.

    Article  Google Scholar 

  • Cardy, J.L. 1983. Field theoretic formulation of an epidemic process with immunization. Journal of Physics A 16: L709-L712.

    Article  Google Scholar 

  • Cardy, J.L. and Grassberger, P. 1985. Epidemic models and percolation. Journal of Physics A: Math. Gen. 18: L267-L271.

    Article  Google Scholar 

  • Cox, J. T. and Durrett, R. 1988. Limit theorems for the spread of epidemics and forest fires. Stochastic Processes and their Applications 30: 171–191.

    Article  Google Scholar 

  • von Diessen, W. and Blumen, A. 1986. Dynamics of forest fires as a directed percolation model. J. Physics A 19: L289-L293.

    Article  Google Scholar 

  • Faddy, M. J. 1986. A note on the behavior of deterministic spatial epidemics. Math Biosci 80: 19–22.

    Article  Google Scholar 

  • Gardner, R. H., Milne, B. T., Turner, M. G., O’Neill, R. V. 1987. Neutral models for the analysis of broad-scale landscape pattern. Landscape Ecology 1: 19–28.

    Article  Google Scholar 

  • Gardner, R. H., Turner, M. G., Dale, V.H. and O’Neill, R.V. 1992. A percolation model of ecological flows.In Landscape Boundaries: Consequences for Biotic Diversity and Ecological Flows. Scientific Committee on Problems of the Environment, Paris, In press.

    Google Scholar 

  • Grassberger, P. 1983. On the critical behavior of the general epidemic process and dynamical percolation. Math. Biosci. 63: 157–172.

    Article  Google Scholar 

  • Kuulasmaa, K. 1982. The spatial general epidemic and locally dependent random graphs. J. Applied Probability 19: 745–758.

    Article  Google Scholar 

  • Kuulasmaa, K. and Zachary, S. 1984. On spatial general epidemics and bond percolation processes. J. Applied Probability 21: 911–914.

    Article  Google Scholar 

  • McKay, G. and Jan, N. 1984. Forest fires as critical phenomena. Journal Physics A 17: L757-L760.

    Article  Google Scholar 

  • Mollison, D. 1977. Spatial contact models for ecological and epidemic spread. J. Roy. Statist. Soc. B. 39: 283–326.

    Google Scholar 

  • Mollison, D. 1986. Modelling biological invasions: chance, explanation, prediction. Phil. Trans. R. Soc. London B 314: 675–693

    Google Scholar 

  • Mollison, D. and Kuulasmaa, K. 1985. Spatial epidemic models: theory and simulations.In Population Dynamics of Rabies in Wildlife. pp. 291–309. Edited by P. J. Bacon. Academic Press, New York.

    Google Scholar 

  • Mooney, H. A., and Godron, M., (Eds.) 1983., Disturbance and Ecosystems. Springer-Verlag, New York.

    Google Scholar 

  • Ohtsuki, T. and Keyes, T. 1986. Biased percolation: forest fires with wind. J. Physics A 19: L281–287.

    Article  Google Scholar 

  • O’Neill, R. V., DeAngelis, D. L., Waide, J. B. and Allen, T. F. H. 1986. A hierachical concept of ecosystems. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • O’Neill, R. V., Milne, B. T., Turner, M. G. and Gardner, R. H. Resource utilization scales and landscape pattern. 1988. Landscape Ecology 2: 63–69.

    Article  Google Scholar 

  • Pickett, S. T. A. and White, P. S. (Eds.) 1985., The ecology of natural disturbance and patch dynamics. Academic Press, New York.

    Google Scholar 

  • Romme, W. H. and Knight, D. H. 1982. Landscape diversity: the concept applied to Yellowstone Park. Bioscience 32: 664–670.

    Article  Google Scholar 

  • Smith, A. D. M. 1985. A continuous time deterministic model of temporal rabies.In Population Dynamics of Rabies in Wildlife. pp. 131–135. Edited by P. J. Bacon. Academic Press, New York.

    Google Scholar 

  • Smythe, R. T. and Wierman, J. C. 1978. First-Passage Percolation on the Square Lattice. Lecture Notes in Mathematics, Volume 671. Springer-Verlag, New York.

    Google Scholar 

  • Turner, M. G. (Ed.) 1987. Landscape heterogeneity and disturbance. Springer-Verlag, New York.

    Google Scholar 

  • Turner, M. G. 1990. Spatial and temporal analysis of landscape patterns. Landscape Ecology 4: 21–30.

    Article  Google Scholar 

  • Turner, M. G., Gardner, R. H., Dale, V. H. and O’Neill, R. V. 1989a. Predicting the spread of disturbance across heterogeneous landscapes. Oikos 55: 121–129.

    Article  Google Scholar 

  • Turner, M. G., O’Neill, R. V., Gardner, R. H. and Milne, B. T. 1989b. Effects of changing spatial scale on the analysis of landscape pattern. Landscape Ecology 3: 153–162.

    Article  Google Scholar 

  • Turner, M. G., Gardner, R. H. and O’Neill, R. V. 1991. Potential responses of landscape boundaries to global environmental change. pp. 52–75.In The Role of Landscape Boundaries in the Management and Restoration of Changing Environments. Department of State, United States Man and the Biosphere Programme.

  • White, P. S. 1979. Pattern, process, and natural disturbance in vegetation. Bot. Rev. 45: 229–299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research supported by Ecological Research Division, Office of Health and Environmental Research, U.S. Department of Energy under contract No. DE-AC05-840R21400 with Martin Marietta Energy Systems, Inc. Contribution No. 10 to the Sevilleta LTER program. Environmental Sciences Division Publication No. 3812, ORNL.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Neill, R.V., Gardner, R.H., Turner, M.G. et al. Epidemiology theory and disturbance spread on landscapes. Landscape Ecol 7, 19–26 (1992). https://doi.org/10.1007/BF02573954

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02573954

Keywords

Navigation