Skip to main content
Log in

Multiobjective routing problems

  • Published:
Top Aims and scope Submit manuscript

Summary

Many network routing problems, particularly where the transportation of hazardous materials is involved, are multiobjective in nature; that is, it is desired to optimise not only physical path length but other features as well. Several such problems are defined here and a general framework for multiobjective routing problems is proposed. The notion of “efficient solution” is defined and it is demonstrated, by means of an example, that a problem may have very many solutions which are efficient. Next, potentially useful solution methods for multiobjective routing problems are discussed with emphasis being placed on the use of shortest/k-shortest path techniques. Finally, some directions for possible further research are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azevedo, J.A., M.E.O.S. Costa, J.J.E.R.S. Madeira and E.Q.V. Martins (1993). An algorithm for the ranking of shortest paths.EJOR,69, 97–106.

    Article  Google Scholar 

  • Azevedo, J.A., J.J.E.R.S. Madeira and E.Q.V. Martins (1994). A computational improvement of an algorithm for shortest path ranking. EJOR,73, 188–191.

    Article  Google Scholar 

  • Boffey, T.B. (1992).Distributed Computing: associated combinatorial problems. Blackwell-Scientific, Oxford.

    Google Scholar 

  • Boffey, T.B. and J. Karkazis (1993). Model and methods for location and routing decisions relating to hazardous materials.Studies in Locational Analysis.5, 149–166.

    Google Scholar 

  • Brumbaugh-Smith, J. and D. Shier (1989). An empirical investigation of some bicriterion shortest path problems.EJOR,43, 216–234.

    Article  Google Scholar 

  • Chen, Y.L. (1990). An algorithm for finding thek quickest paths in a network.Opns. Res.,20, 59–65.

    Article  Google Scholar 

  • Chen, Y.L. (1994). The hybrid spanning three problem.EJOR,77, 179–188.

    Article  Google Scholar 

  • Chen, Y.L. and Y.H. Chin (1990). The quickest path problem.Comput. Opns. Res.,17, 153–161.

    Article  Google Scholar 

  • Chin, S.-M. and P.D.-M. Cheng (1989). Bicriterion routing scheme for nuclear spent fuel transportation.Trans. Res. Rec.,1245, 60–64.

    Google Scholar 

  • Climaco, J.C.N. and E.Q.V. Martins (1982): A bicriterion path problem.EJOR,11, 399–404.

    Article  Google Scholar 

  • Cohon, J.L. (1978).Multiobjective Programming and Planning. Academic Press, New York.

    Google Scholar 

  • Corley H.W. and I.D. Moon (1985). Shortest paths in networks with vector weights.J. Optimization Theory & Applications,46, 79–86.

    Article  Google Scholar 

  • Cox, R. and M. Turquist (1986). Scheduling truck shipments of hazardous materials in the presence of curfews.Trans Res. Rec.,1063, 21–26.

    Google Scholar 

  • Current, J.R., C.S. ReVelle and J.L. Cohon (1985). The maximum covering/shortest path problem: a multiobjective network design and routing formulation.EJOR,21, 189–199.

    Article  Google Scholar 

  • Current, J.R., C.S. ReVelle and J.L. Colon (1986). The hierarchical network design problem.EJOR,27, 57–66.

    Article  Google Scholar 

  • Current, J.R., C.S. ReVelle and J.L. Cohon (1987). The median shortest path problem: a multiobjective approach to analyze cost vs. accessibility in the design of transportation networks.Trans. Sci.,21, 188–197.

    Google Scholar 

  • Current, J.R., C.S. ReVelle and J.L. Cohon (1990). An interactive approach to identify the best compromise solution for two objective shortest path problems.Comput. Opns. Res.,17, 187–198.

    Article  Google Scholar 

  • Current, J.R. and D.A. Schilling (1989). The covering salesman problem.Trans. Sci.,23, 208–213.

    Google Scholar 

  • Current, J.R. and D.A. Schilling (1994). The median tour and maximal covering tour problems: formulations and heuristics.EJOR,73, 114–126.

    Article  Google Scholar 

  • Denardo, E.V. and B.L. Fox (1979). Shortest route methods: 1. Reaching, pruning and buckets.Opns. Res. 27, 161–186.

    Google Scholar 

  • Dial, R., F. Glover, D. Karney and D. Klingman (1974). A computational analysis of alternative algorithms and labelling techniques for finding shortest path trees.Networks,9, 215–248.

    Google Scholar 

  • Dijkstra, E.W. (1959). A note on two problems in connection with graphs.Num. Maths.,1, 269–271.

    Article  Google Scholar 

  • Erkut, E. and V. Verter (1995). Hazardous materials logistics: a review. In Z Drezner,Facility Location: models and methods, Springer-Verlag.

  • Gendreau, M., G. Laporte and F. Semet (1996). The covering tour problem.Opns. Res. To appear.

  • Geoffrion, A.L. (1974). Lagrangean relaxation.Math. Programming Study,2, 82–114.

    Google Scholar 

  • Gopalan, R., K.S. Kolluri, R. Batta and M.H. Karwan (1990). Modeling equity of risk in the transportation of hazardous materials.Opns. Res.,38, 961–973.

    Google Scholar 

  • Hamacher, H.W. and G. Ruhe (1994). On spanning tree problems with multiple objectives.Annals of OR,52, 209–230.

    Google Scholar 

  • Handler, G.Y. and I. Zang (1980). A dual algorithm for the constrained shrotest path problem.Networks,10, 293–310.

    Google Scholar 

  • Hansen, P. (1990), “Bicriterion path problems.” in G. Fandel and T. Gal (eds.),Multiple Criteria Decision Making: Theory and Application.Lecture Notes in Economics and Mathematical Systems 177, Springer-Verlag, Berlin, 109–127.

    Google Scholar 

  • Hart, P., N. Nilsson and B. Raphael (1968). A formal basic for the heuristic determination of minimal cost paths.IEEE Trans. Syst. Man. Cybernet.,4, 100–107.

    Article  Google Scholar 

  • Henig, I.H. (1985). The shortest path problem with two objective functions.EJOR,25, 281–291.

    Article  Google Scholar 

  • Horne, G.J. (1980). Finding thek least cost paths in an acyclic activity network.J. Opl Res. Soc.,31, 443–448.

    Google Scholar 

  • Katoh, N., T. Ibaraki and H. Mine (1982). An efficient algorithm fork shortest simple paths.Networks,12, 411–427.

    Google Scholar 

  • Laporte, G. and S. Martello (1990). The selective traveling salesman problem.Discrete Applied Mathematics.26, 193–207.

    Article  Google Scholar 

  • LeBlanc, L.J., E.K. Morlok and W.P. Pierskalla (1975). An efficient approach to solving the road network equilibrium problem.Trans. Res.,9, 309–318.

    Article  Google Scholar 

  • Lindner-Dutton, L., R. Batta and M.H. Karwan (1991). Equitable sequencing of a given set of hazardous materials shipments.Trans. Sci.,25, 124–137.

    Google Scholar 

  • Malandraki, C. and M.S. Daskin (1993). The maximum benefit Chinese postman problem and the maximum benefit traveling salesman problem.EJOR,65, 218–234.

    Article  Google Scholar 

  • Marsh, M.T. and D.A. Schilling (1994). Equity measurement in facility location analysis: a review and framework.EJOR,74, 1–17.

    Article  Google Scholar 

  • Martins, E.Q.V. (1982). On a multicriteria path problem.EJOR,16, 236–245.

    Article  Google Scholar 

  • Martins, E.Q.V. (1984). An algorithm for ranking paths that may contain cycles.EJOR,18, 123–130.

    Article  Google Scholar 

  • Mesa, J.A. and T.B. Boffey (1996). Location of extensive facilities in networks.EJOR. To appear.

  • Miaou, S.-P. and S.-M. Chin (1991). Computingk-shortest path for nuclear spent fuel highway transportation.EJOR,53, 64–80.

    Article  Google Scholar 

  • Mote, J., I. Murthy and D.L. Olson (1991). A parametric approach to solving bicriterion shortest path problems.EJOR,53, 81–92.

    Article  Google Scholar 

  • Murthy, I. and D.L. Olson (1994). An interactive procedure using domination cones for bicriterion shortest path problems.EJOR,72, 417–431.

    Article  Google Scholar 

  • Nemhauser, G.L. (1972). A generalized permanent label setting algorithm for the shortest path between specified nodes.J. Math. Analysis & Applic.,38, 328–334.

    Article  Google Scholar 

  • Ochi, L.S., E.M. dos Santos, A.A. Montenegro and N. Maculan (1995). Artificial genetic algorithms for the Travelling Purchaser Problem.Proceedings of the Metaheuristics International Conference, Breckenridge, Colorado, Kluwer, Norwell, Mass.

    Google Scholar 

  • Peeters, P.H.M.. (1992). Kortste pad probleem in netwerken met bijkomende restricties. Masters thesis, Vrije Universiteit, Brussels.

    Google Scholar 

  • Perko, A. (1983). A representation of disjoint sets with fast initialization.Information Processing Lett.,16, 21.

    Article  Google Scholar 

  • Perko, A. (1986). Implementation of algorithms fork shortest loopless paths.Networks,16, 149–160.

    Google Scholar 

  • ReVelle, C.S., J. Cohon and D. Shobrys (1991). Simultaneous siting and routing in the disposal of hazardous wastes.Trans. Sci.,25, 138–145.

    Google Scholar 

  • Rosen, J.B., S.-Z. Sun and G.-L. Xue (1991). Algorithms for the quickest path problem and the enumeration of quickest paths.Comput. Opns. Res.,18, 579–584.

    Article  Google Scholar 

  • Skiscim, C.C. and B.L. Golden (1989). Solvingk-shortest and constrained shortest path problems efficiently.Annals of O.R.,20, 249–282.

    Article  Google Scholar 

  • Stowers, C.L. and U.S. Palekar (1993). Location models with routing considerations for a single obnoxious facility.Trans. Sci.,27, 350–362.

    Google Scholar 

  • Tung, C.T. and K.L. Chew (1988). A bicriterion Pareto-optimal path algorithm.APJOR,5, 166–172.

    Google Scholar 

  • Tung, C.T. and K.L. Chew (1992). A multicriteria Pareto-optimal path algorithm.EJOR,62, 203–209.

    Article  Google Scholar 

  • Vincke, Ph. (1974). Problème multicritères.Cahiers du Centre d'Études de Recherche Opérationelle,16, 425–439.

    Google Scholar 

  • Warburton, A. (1987). Approximation of Pareto optima in multi-objective, shortest path problems.Opns. Res.,35, 70–79.

    Google Scholar 

  • Wyman, M.M. and M. Kuby (1996). Proactive optimization of waste transportation, location and technology. To appear inLocation Science,3.

  • Yates, D.F. (1995). Private communication.

  • Yen, J.Y. (1971). Finding thek-shortest, loopless paths in a network.Mgmt. Sci.,17, 712–715.

    Google Scholar 

References

  • Carrizosa, E., E. Conde, F.R. Fernández and J. Puerto (1995).Multicriteria analysis with partial information about the weighting coefficients. EJOR,81, 291–301.

    Article  Google Scholar 

  • Henig, M.I. (1994).Efficient interactive metods for a class of mutiattribute shortest path problems. Management Science,40, 891–897.

    Google Scholar 

  • Ulungu, E.U. and J. Teghem (1994).Multiobjective combinatorial optimization problems: A survey. Journal of multi-Criteria Decision Analysis,3, 83–104.

    Google Scholar 

References

  • Ahuja, R.K., T.L. Magnati, J.B. Orlin and M.R. Reddy (1995). Applications of Network Optimization. InNetwork Models, Handbooks in Operations Research and Management Science (G.L. Nemhauser and A.H.G. Rinnooy Kan, eds.), Elsevier, Amsterdam, 1–83.

    Google Scholar 

  • Assad, A.A. (1988). Modeling and Implementation Issues in Vehicle Routing. InVehicle Routing: Methods and Studies (B.L. Golden and A.A. Assad, eds.), North-Holland, Amsterdam, 7–45.

    Google Scholar 

  • Boffey, T.B. (1995). Multiobjective Routing Problems,TOP. This issue.

  • Brans, J.P., P. Vincke and B. Mareschal (1986). How to Select and How to Rank Projects: The PROMETHEE Method.European Journal of Operational Research,24, 228–238.

    Article  Google Scholar 

  • Clarke, G. and J.W. Wright (1964). Scheduling of Vehicles from a Central Depot to a Number of Delivery Points.Operations Research 12, 568–581.

    Google Scholar 

  • Crainic, T.G., M. Florian, J. Guélat and H. Spiess (1990). Planning of Freight Transportation: STAN, An Interactive Graphic System,Transportation Research Record,1283, 97–124.

    Google Scholar 

  • Crainic, T.G., M. florian and D. Larin (1994). STAN: New Developments, Proceedings of the 23nd Annual Meeting of the Western Decision, Sciences Institute (A.S. Khade and R. Brown, eds.), Maui, Hawaii, 493–498.

  • Crainic, T.G., M. Gendreau, G. Laporte and C. Lardinois (1995). Parallel Computing: New Opportunities for Transportation Research.Scientia Iranica. Forthcoming.

  • Dufourd, H., M. Gendreau and G. Laporte (1995). Locating a Transit Line Using Tabu Search.Location Science. Forthcoming.

  • Eiselt, H.A. and G. Laporte (1987). Combinatorial Optimization Problems with Soft and hard Requirements.Journal of the Operational Research Society 38, 785–795.

    Article  Google Scholar 

  • Gendreau, M., A. Hertz and G. Laporte (1992). New Insertion and Postoptimization Procedures for the Traveling Salesman Problem.Operations Research 40, 1086–1094.

    Google Scholar 

  • Gendreau, M., A. Hertz and G. Laporte (1994). A Tabu Search Heuristic for the Vehicle Routing Problem.Management Science 40, 1276–1290.

    Google Scholar 

  • Gendreau, M., G. Laporte and J.A. Mesa (1995). Locating Rapid Transit Lines.Journal of Advanced Transportation 29, 145–162.

    Article  Google Scholar 

  • Gillett, B.E. and L.R. Miller (1974). A Heuristic Algorithm for the Vehicle Dispatch Problem.Operations Research 22, 340–349.

    Google Scholar 

  • Gomes, L. (1989). Multicriteria Ranking of Urban Transportation System Alternatives.Journal of Advanced Transportation 23, 43–52.

    Google Scholar 

  • Hodgson, M.J., G. Laporte and F. Semet (1995). A Covering Tour for the Planning of Mobile Health Care Facilities in Suhum District, Ghana. Publication #95-52, Centre for research on transportation, Montreal.

    Google Scholar 

  • INRO Consultants Inc. (1994). EMME/2 User's Manual, Release 7.0.

  • INRO Consultants Inc. (1995) STAN User's Manual, Release 4.0.

  • Labbé, M. and G. Laporte (1986). Maximizing User Convenience and Postal Service Efficiency in Post Box Location.Belgian Journal of Operations Research, Statistics and Computer Science 26, 21–35.

    Google Scholar 

  • Lin, S. (1965). Computer Solutions of the Traveling Salesman Problem.Bell System Technical Journal 44, 2245–2269.

    Google Scholar 

  • Magnanti, T.L. and R.T. Wong (1984). Network Design and Transportation Planning: Models and Algorithms.Transportation Science 18, 1–55.

    Google Scholar 

  • March, J.G. (1978). Bounded Rationality, Ambiguity and the Engineering of Choice.The Bell Journal of Economics 9, 587–608.

    Article  Google Scholar 

  • Oppong, J.R. and M.J. Hodgson (1994). Spatial Accessibility of Health Care Facilities in Suhum District, Ghana.Professional Geographer 46, 199–209.

    Article  Google Scholar 

  • Or, I. (1976). Traveling Salesman-Type Combinatorial Problems and their Relation to the Logistics of Blood Banking. Ph. D. thesis, Northwestern University, Evanston, III.

    Google Scholar 

  • Reeves, C.R., ed. (1993).Modern Heuristic Techniques for Combinatorial Problems, Blackwell, Oxford.

    Google Scholar 

  • Rochat and É.D. Taillard (1995). Probabilistic Diversification and Intensification in Local Search for Vehicle Routing.Journal of Heuristics,1, 147–167.

    Article  Google Scholar 

  • Roy, J. and L. Delorme (1989). NETPLAN: A Network Optimization Model for Tactical Planning on the Less-then-Truckload Motor Carrier Industry.INFOR,27, 22–35.

    Google Scholar 

  • Vincke, P. (1992).The Multicriteria Decision Aid, Wiley, Chichester.

    Google Scholar 

  • Weick, K.E. (1979).The Social Psychology of Organizing, Addison-Wesley, Reading, Mass.

    Google Scholar 

References

  • Ahmad, A., Thesis Dissertation. Rensselaer Polytechnic Institute, Troy, New York,A procedure for deriving a small portfolio of nondominated routes from a stochastic multiobjective network.

  • Current, J. and M. Marsh (1993).Multiobjective transportation, network design and routing problems: taxonomy and annotation. EJOR65, 4–19.

    Article  Google Scholar 

  • List, G.P., P.B. Mirchandani, M.A. Turnquist and K.G. Zografos (1991).Modeling and analysis for hazardous materials transportation: risk, analysis, routing/scheduling and facility location, Trans. Sci.25, 100–114.

    Google Scholar 

  • Sivakumar, R.A. and R., Batta (1994).The variance-constrained shortest path problem. Trans. Sci.28, 309–316.

    Google Scholar 

  • Steenbrink, P. (1974).Optimization of transportation networks, Wiley.

  • Wijeratne, A.B., M.A. Turnquist and P.B. Mirchandani (1993).Multiobjective routing of hazardous materials in stochastic networks, EJOR65, 33–43.

    Article  Google Scholar 

References

  • Beasley, J.E. and N. Christofides (1989). An algorithm for the resource constrained shortest path problem.Networks 19, 379–394.

    Google Scholar 

  • Berman, O. and G.Y. Handler (1987). Optimal minimax path of a single service unit on a network to nonservice destinations.Transportation Science 21, 115–122.

    Google Scholar 

  • Bryson, N. (1993). A parametric programming methodology to solve the Lagrangian dual for network problems with multiple side-constraints.Computers Operations Research 20, 541–552.

    Article  Google Scholar 

  • Chang, H.J. (1985). A minimax-arc-path problem.Tamkang J. of Management Science,4, 7–12.

    Google Scholar 

  • Chen, Y.L. (1992). An algorithm for findingk-quickest paths in a network.Computers Operations Research 20, 59–65.

    Article  Google Scholar 

  • Current, J., H. Pirkul and E. Rolland (1994). Efficient algorithms for solving the shortest covering path problem.Transportation Science 28, 317–327

    Google Scholar 

  • Deo, N. and C. Pang (1984). Shortest path algorithms. Taxonomy and annotation.Networks 14, 275–323.

    Google Scholar 

  • Fisher, M.L. (1981). The lagrangian relaxation methods for solving integer programming problems.Management Science 27, 1–18.

    Article  Google Scholar 

  • Gallo, G. and S. Pallotino (1988). Shortest path algorithms.Annals of Operations Research 13, 3–79.

    Article  Google Scholar 

  • Hassin, R. (1992). Approximation schemes for the restricted shortest path problem.Mathematics of Operations Research 17, 36–42.

    Google Scholar 

  • Gopalan, R., R. Batta and M.H. Karwan (1990). The equity constrained shortest path problem.Computers Operations Research 17, 297–307.

    Article  Google Scholar 

  • Guignard, M. and M.B. Rosenwein (1989). An application oriented guide for designing lagrangian dual ascent algorithms.EJOR 43, 197–205.

    Article  Google Scholar 

  • Ignizio, J.P. (1976). Goal programming and extensions.Lexington Books.

  • Murthy, I. and S.S. Her (1992). Solving mini-max shortest path problems on a network.Naval Research Logistics 39, 669–683.

    Google Scholar 

  • Pelegrín, B. and P. Fernández (1995). Un algoritmo para la obtención de caminos sum-max eficientes.XXII Congreso Nacional de Estadística e I.O. Sevilla. Spain.

  • Romero, C. (1991). Handbook of critical issues in goal programming.Pergamon Press.

  • Sivakumar, R.A., R. Batta and M.H. Karwan (1993). A network-based model for transporting extremely hazardous materials.Operations Research Letters 13, 85–93.

    Article  Google Scholar 

  • Whitehouse, G.E. (1973). Systems analysis and design using network techniques.Prentice Hall.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Invited by B. Pelegrin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boffey, B., García, F.R.F., Laporte, G. et al. Multiobjective routing problems. Top 3, 167–220 (1995). https://doi.org/10.1007/BF02568585

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02568585

Keywords

Navigation