Skip to main content
Log in

Ultrasonic velocity as a predictor of strength in bovine cancellous bone

  • Laboratory Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Ultrasonic methods measure properties intrinsic to bone's structure that are not necessarily dependent on bone mass. Therefore, ultrasound may prove to be a useful tool for diagnosing bone fragility and osteoporosis. The goal of this study was to determine the relationship between apparent velocity of ultrasound (AVU) measured using the Osteo Technology prototype I machine and cancellous bone yield strength (σy). AVU correlated well with σy (r=0.753). Consistent with theory, the best predictor of cancellous bone strength was the combination of apparent density (ρa) and AVU, ρa(AVU)2, which had an r2 of 77.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg 59-A: 954–962

    PubMed  CAS  Google Scholar 

  2. Rice JC, Cowin SC, Bowman JA (1988) On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomech 21:155–168

    Article  PubMed  CAS  Google Scholar 

  3. Yoon HS, Katz JL (1976) Ultrasonic wave propagation in human cortical bone. II. Measurements of elastic properties and microhardness. J Biomech 9:459–464

    Article  PubMed  CAS  Google Scholar 

  4. Van Buskirk WC, Cowin SC, Ward RN (1981) Ultrasonic measurements of orthotropic elastic constants of bovine femoral bone. J Biomech Eng 103:67–71

    PubMed  Google Scholar 

  5. Ashman RB, Cowin SC, Van Buskirk WC, Rice JC (1984) A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech 17:349–361

    Article  PubMed  CAS  Google Scholar 

  6. Andre MP, Craven JD, Greenfield MA (1980) Measurement of the velocity of ultrasound in the human femur in vivo. Am Assoc Phys Med 7:324–330

    CAS  Google Scholar 

  7. Greenfield MA, Craven JD, Huddleston A, Kehrer ML, Wishko D, Stern R (1981) Measurement of the velocity of ultrasound in human cortical bone. Radiology 138:701–710

    PubMed  CAS  Google Scholar 

  8. Rubin CT, Pratt GW Jr, Porter AL, Lanyon LE, Poss R (1988) Ultrasonic measurement of immobilization-induced osteopenia: an experimental study in sheep. Calcif Tissue Int 42:309–312

    Article  PubMed  CAS  Google Scholar 

  9. Wright LL, Glade MJ, Gopal J (1987) The use of transmission ultrasonics to assess bone status in the human newborn. Pediatr Res 22:541–545.

    PubMed  CAS  Google Scholar 

  10. Rubin CT, Pratt GW, Porter AL, Lanyon LE, Poss R (1987) The use of ultrasound in vivo to determine acute change in the mechanical properties of bone following intense physical activity. J Biomech 20:723–727

    Article  PubMed  CAS  Google Scholar 

  11. Heaney RP, Avioli LV, Chestnut CH, Lappe J, Recker RR, Brandenburger GH (1989) Osteoporotic bone fragility: detection by ultrasound transmission velocity. JAMA 261:2986–2990

    Article  PubMed  CAS  Google Scholar 

  12. Kolsky H (1963) Stress waves in solids. Dover, New York

    Google Scholar 

  13. Ashman RB, Corin JD, Turner CH (1987) Elastic properties of cancellous bone: measurement by an ultrasonic technique. J Biomech 20:979–986

    Article  PubMed  CAS  Google Scholar 

  14. Brown TD, Ferguson AB (1980) Mechanical property distributions in the cancellous bone of the human proximal femur. Acta Orthop Scand 51:429–437

    Article  PubMed  CAS  Google Scholar 

  15. Hvid I, Jensen NC, Bunger C, Solund K, Djurhuus JC (1985) Bone mineral assay: its relation to the mechanical strength of cancellous bone. Eng Med 14:79–83

    PubMed  CAS  Google Scholar 

  16. Hvid I, Jensen J (1984) Cancellous bone strength at the proximal human tibia. Eng Med 13:21–25

    PubMed  CAS  Google Scholar 

  17. Vahey JW, Lewis JL, Vanderby R (1987) Elastic moduli, yield stress, and ultimate stress of cancellous bone in the canine proximal femur. J Biomech 20:29–33

    Article  PubMed  CAS  Google Scholar 

  18. Turner CH (1989) Yield behavior of bovine cancellous bone. J Biomech Eng 111:256–260

    PubMed  CAS  Google Scholar 

  19. Williams JL, Lewis JL (1982) Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis. J Biomech Eng 104:50–56

    Article  PubMed  CAS  Google Scholar 

  20. Bensusan JS, Davy DT, Heiple KG, Verdin PJ (1983) Tensile, compressive and torsional testing of cancellous bone. Trans 29th Orthop Res Soc 8:132

    Google Scholar 

  21. Gibson LJ (1985) The mechanical behaviour of cancellous bone. J Biomech 18:317–328

    Article  PubMed  CAS  Google Scholar 

  22. Galante J, Rostoker W, Ray RD (1970) Physical properties of trabecular bone. Calcif Tissue Res 5:236–246

    Article  PubMed  CAS  Google Scholar 

  23. Ashman RB, Rho JY, Turner CH (1989) Anatomical variation of orthotropic elastic moduli of the proximal human tibia. J Biomech 22:895–900

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, C.H., Eich, M. Ultrasonic velocity as a predictor of strength in bovine cancellous bone. Calcif Tissue Int 49, 116–119 (1991). https://doi.org/10.1007/BF02565132

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02565132

Key words

Navigation