Skip to main content
Log in

Exponential and bayesian conjugate families: Review and extensions

  • Published:
Test Aims and scope Submit manuscript

Summary

The notion of a conjugate family of distributions plays a very important role in the Bayesian approach to parametric inference. One of the main features of such a family is that it is closed under sampling, but a conjugate family often provides prior distributions which are tractable in various other respects. This paper is concerned with the properties of conjugate families for exponential family models. Special attention is given to the class of natural exponential families having a quadratic variance function, for which the theory is particularly fruitful. Several classes of conjugate families have been considered in the literature and here we describe some of their most interesting features. Relationships between such classes are also discussed. Our aim is to provide a unified approach to the theory of conjugate families for exponential family likelihoods. An important aspect of the theory concerns reparameterisations of the exponential family under consideration. We briefly review the concept of a conjugate parameterisation, which provides further insight into many of the properties discussed throughout the paper. Finally, further implications of these results for Bayesian conjugate analysis of exponential families are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowitz, M. and Stegun, I.A. (1965).Handbook of Mathematical Functions. New York: Dover.

    Google Scholar 

  • Arnold, B. C., Castillo, E. and Sarabia, J. M. (1993). Conjugate exponetial family priors for exponential family likelihoods.Statistics 25, 71–77.

    MathSciNet  Google Scholar 

  • Bar-Lev, S., Bshouty, D., Enis, P., Letac, G., Lu, I. and Richards, D. (1995). The diagonal multivariate natural exponential families and their classification.Journal of Theoretical Probability. (To be published).

  • Barndorff-Nielsen, O. (1978).Information and Exponential Families in Statistical Theory. Chichester: Wiley.

    MATH  Google Scholar 

  • Bernardo, J. M. and Smith, A. F. M. (1994).Bayesian Theory. Chichester: Wiley.

    MATH  Google Scholar 

  • Brown, L. D. (1986).Fundamentals of Statistical Exponential Families, with Applications in Statistical Decision Theory. Lecture Notes,9. Hayward: Institute of Mathematical Statistics.

    MATH  Google Scholar 

  • Cacoullos, T. (1987). Characterizing priors by posterior expectations in multiparameter exponential families.Ann. Inst. Statist. Math. 39, 399–405.

    Article  MathSciNet  Google Scholar 

  • Casalis, M. (1990).Familles exponentielles naturelles invariantes par un groupe. Ph.D. Thesis, P.aul Sabatier University, Toulouse.

    Google Scholar 

  • Casalis, M. (1991). Les familles exponentielles à variance quadratique homogène sont des lois de Wishart sur un cône symétrique.Comptes Rendus de l’Academie des Sciences, Paris t.312, Série I, 537–540.

    MathSciNet  Google Scholar 

  • Casalis, M. (1994). The 2d+4 simple quadratic natural exponential families on ℝd Submitted toAnn. Statist.

  • Consonni, G. and Veronese, P. (1992). Conjugate priors for exponential families having quadratic variance functions.J. Amer. Statist. Assoc. 87, 1123–1127.

    Article  MathSciNet  Google Scholar 

  • Dalal, S. R. and Hall, W. J. (1983). Approximating priors by mixtures of natural conjugate priors.J. Roy. Statist. Soc. B 45, 278–286.

    MathSciNet  Google Scholar 

  • Diaconis, P. and Ylvisaker, D. (1979). Conjugate priors for exponential families.Ann. Statist. 7, 269–281.

    MathSciNet  Google Scholar 

  • Diaconis, P. and Ylvisaker, D. (1985). Quantifying prior, opinion.Bayesian Statistics 2 (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.), Amsterdam: North-Holland, 133–156 (with discussion).

    Google Scholar 

  • Dickey, J. M. (1982). Conjugate families of distributions.Encyclopedia of Statistical Sciences (S. Kotz and N. Johnson, eds.), Chichester: Wiley, 135–145.

    Google Scholar 

  • Eguchi, S. and Yanagimoto, T. (1995). Improvement of maximum likelihood estimators using relative entropy risk.Unpublished Technical Report.

  • Fienberg, S. E. (1980). Linear and quasi-linear Bayes estimators.Bayesian Analysis in Econometrics and Statistics (A. Zellner, ed.), Amsterdam: North-Holland, 355–361.

    Google Scholar 

  • Gutiérrez-Peña, E. (1992). Expected logarithmic divergence for exponential families.Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.). Oxford: University Press, 669–674.

    Google Scholar 

  • Gutiérrez-Peña, E. (1995a). Moments for the canonical parameter of an exponential family under a conjugate distribution.Tech. Rep. 95-01, Department of Mathematics, Imperial College London.

  • Gutiérrez-Peña, E. (1995b).Bayesian Topics Relating to the Exponential Family.Ph.D. Thesis, London: Imperial College London.

    Google Scholar 

  • Gutiérrez-Peña, E. and Smith, A. F. M. (1995). Conjugate parameterisations for natural exponential families.J. Amer. Statist. Assoc. 90, 1347–1356.

    Article  MathSciNet  Google Scholar 

  • Hills, S. E. and Smith, A. F. M. (1992). Parameterisations issues in Bayesian inference.Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.). Oxford: University Press, 227–246.

    Google Scholar 

  • Jeffreys, H. (1961).Theory of Probability, 3rd. edn. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Jewell, W. S. (1974). Exact multidimensional credibility.Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker,74, 193–214.

    Google Scholar 

  • Jorgensen, B. (1987). Exponential dispersion models.J. Roy. Statist. Soc. B 49, 127–162 (with discussion).

    MathSciNet  Google Scholar 

  • Jorgensen, B., Letac, G. and Seshadri, V. (1989). Sur une propriété des familles exponentielles naturelles de variance quadratique.Canadian J. Statist. 17, 1–8.

    MathSciNet  Google Scholar 

  • Letac, G. (1989). A characterization of the Wishart exponential families by an invariance property.J. Theoretical Prob. 2, 71–86.

    Article  MathSciNet  Google Scholar 

  • Letac, G. (1991). The classification of the natural exponential families by their variance functions.Proceedings of the 48th Session of the International Statistical Institute 54, Book 3, 1–18.

    Google Scholar 

  • Letac, G. and Mora, M. (1990). Natural real exponential families with cubic variance functions.Ann. Statist. 18, 1–37.

    MathSciNet  Google Scholar 

  • Magnus, J. R. and Neudecker, H. (1988)Matrix Differential Calculus, with Applications in Statistics and Econometrics. Chichester: Wiley.

    MATH  Google Scholar 

  • Morris, C. N. (1982). Natural exponential families with quadratic variance functions.Ann. Statist. 10, 65–80.

    MathSciNet  Google Scholar 

  • Morris, C. N. (1983). Natural exponential families with quadratic variance functions: Statistical Theory.Ann. Statist. 11, 515–529.

    MathSciNet  Google Scholar 

  • Raiffa, H. and Schlaifer, R. (1961)Applied Statistical Decision Theory. Boston: Harvard Business School.

    Google Scholar 

Additional References in the Discussion

  • Arnold, B. C., Castillo, E. and Sarabia, J. M. (1992). Conditionally Specified Distributions.Lecture Notes in Statistics 73. Berlin: Springer-Verlag, U.S.A.

    MATH  Google Scholar 

  • Bernardo, J. M. (1997). Noninformative priors do not exist: a discussion.J. Statist. Plann. Inference (to appear).

  • Bar-Lev, S. K., Enis, P. and Letac, G. (1994). Sampling in models which admit a given exponential family as a conjugate family of priors.Ann. of Statist. 22, 1555–1586.

    MathSciNet  Google Scholar 

  • Bernardo, J. M. (1997). Noninformative priors do not exist: a discussion.J. Statis. Planning and Inference (to appear, with discussion).

  • Calabi, E. (1958) Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jorgens.Michigan Math. J. 5, 105–126.

    Article  MathSciNet  Google Scholar 

  • Caro, E., Domínguez, J. I. and Girón, F. J. (1994). A conjugate family forAR(1) processes with exponential errors.Commun. Statist.-Theory Meth. 23, (6), 1771–1784.

    Google Scholar 

  • Casalis, M. (1996) The 2d+4 simple quadratic natural exponential families on ℝd.Ann. Statist. 24, 1828–1854.

    Article  MathSciNet  Google Scholar 

  • Faraut, J. and Koranyi, A. (1994).Analysis on Symmetric Cones, Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Geiger, D. and Heckerman, D. (1994). A characterization of the Dirichlet distribution through global and local independence.Tech. Rep. 94-16, Microsoft Research, Redmond, WA, USA.

    Google Scholar 

  • Geiger, D. and Heckerman, D. (1995). A characterization of the bivariate normal-wishart distribution.Tech. Rep. 95-53. Microsoft Research, Redmond, WA, USA.

    Google Scholar 

  • Girón, F.J. and Moreno, E. (1997). Estimating with incomplete count data: A Bayesian approach.J. Statist. Planning and Inference, (to appear).

  • Gutiérrez-Peña, E. and Smith, A.F.M. (1995). Conjugate parameterizations for natural exponential families.J. Amer. Statist. Assoc. 90, 1347–1356.

    Article  MathSciNet  Google Scholar 

  • Jackson, D. A., O’Donovan, T. M., Zimmer, W. J. and Deely, J. J. (1970). Minimax estimators in the exponential family.Biometrika 57, 439–443.

    MathSciNet  Google Scholar 

  • Jorgens, K. (1954). Uber die Losungen der Differentialgleichung.Math. Annalen 127, 130–134.

    Article  MathSciNet  Google Scholar 

  • Kadane, J. B., Chan, N. H. and Wolfson, L. J. (1996). Priors for Unit-root Models.Journal of Econometrics 75, 99–111.

    Article  MathSciNet  Google Scholar 

  • Magiera, R. and Wilczyński, M. (1991). Conjugate Priors for Exponential-type Processes.Statistics and Probability Letters 12, 379–384.

    Article  MathSciNet  Google Scholar 

  • Morris, C. N. (1982) Natural exponential families with quadratic variance functions.Ann. Statist. 10, 65–80.

    MathSciNet  Google Scholar 

  • Pogorelov, A. V. (1978)The Minkowski Multidimensional Problem. New York: Wiley

    MATH  Google Scholar 

  • Spiegelhalter, D. J., Dawid, A. P., Lauritzen, S. L. and Cowell, R. G. (1993). Bayesian analysis in expert systems.Statistical Science 8, 219–282.

    MathSciNet  Google Scholar 

  • Walter, G. G., Hamedani, G. G. (1991). Bayes empirical Bayes estimation for natural exponential families with quadratic variance functions.Annals of Statistics 19, 1191–1224.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research partially funded by ONR Grant N00014-96-1-0192

Research funded by NSF Grant DMS 94.04408 and Texas ARP Grant 003658130

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez-Peña, E., Smith, A.F.M., Bernardo, J.M. et al. Exponential and bayesian conjugate families: Review and extensions. Test 6, 1–90 (1997). https://doi.org/10.1007/BF02564426

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02564426

Keywords

Navigation