Skip to main content
Log in

Sphingolipid metabolism in the regulation of bioactive molecules

  • Plenary Lectures
  • Published:
Lipids

Conclusions

In conclusion, the study of signaling and cell regulation through ceramide has now evolved to the biochemical level by focusing on specific enzymes of ceramide metabolism. A general hypothesis can be presented whereby individual enzymes of ceramide metabolism serve as input points in the regulation of ceramide levels (Scheme 1). For example, activation of SMases or ceramide synthase would elevate ceramide levels and activate ceramide-induced responses. On the other hand, activation of enzymes of ceramide degradation or incorporation such as ceramidases or SM synthase decreases and attenuates ceramide levels. Also, as an important corollary, some of these enzymes may play an additional fundamental role in interconverting lipid signals. For example, SM synthase has the capacity of interconverting a ceramide signal into a DAG signal, whereas ceramidases can transform a ceramide signal into a sphingosine or sphingosine-phosphate signal. This area of research promises great future insight into important areas of cell studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A-SMase:

a lysosomal acid SMase

DAG:

diacylglycerol

GSH:

glutathione

ICE:

interleukin-converting enzyme

N-SMase:

neutral magnesium-dependent

PC:

phosphatidylcholine

PKC:

protein kinase C

PLC:

phospholipase C

Rb:

retinoblastoma gene product

SM:

sphingomyelin

SMase:

sphingomyelinase

TNFα:

tumor necrosis factor α

References

  1. Exton, J.H. (1994) Phosphatidylcholine Breakdown and Signal Transduction,Biochim. Biophys. Acta 1212, 26–42.

    PubMed  CAS  Google Scholar 

  2. Hannun, Y.A. (1994) The Sphingomyelin Cycle and the Second Messenger Function of Ceramide,J. Biol. Chem. 269, 3125–3128.

    PubMed  CAS  Google Scholar 

  3. Hannun, Y.A. (1997) Sphingolipid Metabolism and Biology,Encyclopedia of Human Biology 8, 133–143.

    Google Scholar 

  4. Michel, C., Van Echten-Deckert, G., Rother, J., Sandhoff, K., Wang, E., and Merrill, A.H., Jr. (1997) Characterization of Ceramide Synthesis. A Dihydroceramide Desaturase Introduces the 4,5-trans-Double Bond of Sphingosine at the Level of Dihydroceramide,J. Biol. Chem. 272, 22432–22437.

    Article  PubMed  CAS  Google Scholar 

  5. Ullman, M.D., and Radin, N.S. (1974) The Enzymatic Formation of Sphingomyelin from Ceramide and Lecithin in Mouse Liver,J. Biol. Chem. 249, 1506–1512.

    PubMed  CAS  Google Scholar 

  6. Voelker, D.R.K., and Kennedy, E.P. (1982) Cellular and Enzymic Synthesis of Sphingomyelin,Biochemistry 21, 2753–2759.

    Article  PubMed  CAS  Google Scholar 

  7. Van Echten, G., and Sandhoff, K. (1993) Ganglioside Metabolism. Enzymology, Topology, and Regulation,J. Biol. Chem. 268, 5341–5344.

    PubMed  Google Scholar 

  8. Kolesnick, R.N., and Hemer, M.R. (1990) Characterization of a Ceramide Kinase Activity from Human Leukemia (HL-60) Cells. Separation from Diacylglycerol Kinase Activity,J. Biol. Chem. 265, 18803–18808.

    PubMed  CAS  Google Scholar 

  9. Liu, B., Obeid, L.M., and Hannun, Y.A. (1997) Sphingomyelinases in Cell Regulation,Semin. Cell Dev. Biol. 8, 311–322.

    Article  PubMed  CAS  Google Scholar 

  10. Hassler, D.F., and Bell, R.M. (1993) Ceramidases: Enzymology and Metabolic Roles,Adv. Lipid Res. 26, 49–57.

    PubMed  CAS  Google Scholar 

  11. Hannun, Y.A., Loomis, C.R., Merrill, A.H. Jr., and Bell, R.M. (1986) Sphingosine Inhibition of Protein Kinase C Activity and Phorbol Dibutyrate Bindingin vitro and Human Platelets,J. Biol. Chem. 261, 12604–12609.

    PubMed  CAS  Google Scholar 

  12. Okazaki, T., Bell, R.M., and Hannun, Y.A. (1989) Sphingomyelin Turnover Induced by Vitamin D3 in HL-60 Cells,J. Biol. Chem. 264, 19076–19080.

    PubMed  CAS  Google Scholar 

  13. Hannun, Y.A. (1996) Functions of Ceramide in Coordinating Cellular Responses to Stress,Science 274, 1855–1859.

    Article  PubMed  CAS  Google Scholar 

  14. Jayadev, S., Liu, B., Bielawska, A.E., Lee, J.Y., Nazaire, F., Pushkareva, M.Y., Obeid, L.M., and Hannun, Y.A. (1995) Role of Ceramide in Cell Cycle Arrest,J. Biol. Chem. 270, 2047–2052.

    Article  PubMed  CAS  Google Scholar 

  15. Dbaibo, G., Pushkareva, M.Y., Jayadev, S., Schwartz, J.K., Horowitz, J.M., Obeid, L.M., and Hannun, Y.A. (1995) Retinoblastoma Gene Product as a Downstream Target for a Ceramide-Dependent Pathway of Growth Arrest,Proc. Natl. Acad. Sci. USA 92, 1347–1351.

    Article  PubMed  CAS  Google Scholar 

  16. Obeid, L.M., Linardic, C.M., Karolak, L.A., and Hannun, Y.A. (1993) Programmed Cell Death Induced by Ceramide,Science 259, 1769–1771.

    Article  PubMed  CAS  Google Scholar 

  17. Dbaibo, G.S., Perry, D.K., Gamard, C.J., Platt, R., Poirier, G.G., Obeid, L.M., and Hannun, Y.A. (1997) Cytokine Response Modifier A (CrmA) Inhibits Ceramide Formation in Response to Tumor Necrosis Factor (TNF)-α: CrmA and Bcl-2 Target Distinct Components in the Apoptotic Pathway,J. Exp. Med. 185, 481–490.

    Article  PubMed  CAS  Google Scholar 

  18. Olivera, A., Buckley, N.E., and Spiegel, S. (1992) Sphingomyelinase and Cell-Permeable Ceramide Analogs Stimulate Cellular Proliferation in Quiescent Swiss 3T3 Fibroblasts,J. Biol. Chem. 267, 26121–26127.

    PubMed  CAS  Google Scholar 

  19. Spiegel, S., and Milstein, S. (1995) Sphingolipid Metabolites: Members of a New Class of Lipid Second Messengers,J. Membr. Biol. 146, 225–237.

    PubMed  CAS  Google Scholar 

  20. Ohta, H., Sweeney, E.A., Masamune, A., Yatomi, Y., Hakomori, S., and Igarashi, Y. (1995) Induction of Apoptosis by Sphingosine in Human Leukemic HL-60 Cells: A Possible Endogenous Modulator of Apoptotic DNA Fragmentation Occurring During Phorbol Ester-Induced Differentiation,Cancer Res. 55, 691–697.

    PubMed  CAS  Google Scholar 

  21. Zhang, H., Buckley, N.E., Gibson, K., and Spiegel, S. (1990) Sphingosine Stimulates Cellular Proliferationvia a Protein Kinase C-Independent Pathway,J. Biol. Chem. 265, 76–81.

    PubMed  CAS  Google Scholar 

  22. Gomez-Muñoz, A., Martin, A., O’Brien, L., and Brindley, D.N. (1994) Cell-Permeable Ceramides Inhibit the Stimulation of DNA Synthesis and Phospholipase D Activity by Phosphatidate and Lysophosphatidate in Rat Fibroblasts,J. Biol. Chem. 269, 8937–8943.

    PubMed  Google Scholar 

  23. Zhang, H., Desai, N.N., Olivera, A., Seki, T., Brooker, G., and Spiegel, S. (1991) Sphingosine-1-Phosphate, a Novel Lipid, Involved in Cellular Proliferation,J. Cell Biol. 114, 155–167.

    Article  PubMed  CAS  Google Scholar 

  24. Yamada, K., Sakane, F., Imai, S., and Takemura, H. (1993) Sphingosine Activates Cellular Diacylglycerol Kinase in Intact Jurkat Cells, a Human T-cell Line,Biochim. Biophys. Acta 1169, 217–224.

    PubMed  CAS  Google Scholar 

  25. Lavie, Y., Piterman, O., and Liscovitch, M. (1990) Inhibition of Phosphatidic Acid Phosphohydrolase Activity by Sphingosine. Dual Action of Sphingosine in Diacylglycerol Signal Termination,FEBS Lett. 277, 7–10.

    Article  PubMed  CAS  Google Scholar 

  26. Desai, N.N., Zhang, H., Olivera, A., Mattie, M.E., and Spiegel, S. (1992) Sphingosine-1-Phosphate, a Metabolite of Sphingosine, Increases Phosphatidic Acid Levels by Phospholipase D Activation,J. Biol. Chem. 267, 23122–23128.

    PubMed  CAS  Google Scholar 

  27. De Maria, R., Lenti, L., Malisan, F., D’Agostino, F., Tomassini, B., Zeuner, A., Rippo, M.R., and Testi, R. (1997) Requirement for GD3 Ganglioside in CD95- and Ceramide-Induced Apoptosis,Science 277, 1652–1655.

    Article  PubMed  Google Scholar 

  28. Merrill, A.H., Jr., Schmelz, E.-M., Dillehay, D.L., Spiegel, S., Shayman, J.A., Schroeder, J.J., Riley, R.T., Voss, K.A., and Wang, E. (1997) Sphingolipids—The Enigmatic Lipid Class: Biochemistry, Physiology, and Pathophysiology,Toxicol. Appl. Pharmacol. 142, 208–225.

    Article  PubMed  CAS  Google Scholar 

  29. Nikolova-Karakashian, M., Vales, T.R., Wang, E., Menaldino, D.S., Alexander, C., Goh, J., Liotta, D.C., and Merrill, A.H., Jr. (1997) Ceramide Synthase and Ceramidases in the Regulation of Sphingoid Base Metabolism, inSphingolipid-Mediated Signal Transduction (Hannun, Y.A., ed.) pp. 159–172, MBIU-R.G. Landes Company, Austin, TX.

    Google Scholar 

  30. Merrill, A.H., Jr., Liotta, D.C., and Riley, R.T. (1996) Fumonisins: Fungal Toxins That Shed Light on Sphingolipid Function,Trends Cell Biol. 6, 218–223.

    Article  PubMed  CAS  Google Scholar 

  31. Riley, R.T., Wang, E., and Schroeder, J.J., Smith, E.R., Plattner, R.D., Abbas, H., Yoo, H.S., and Merrill, A.H., Jr. (1996) Evidence for Disruption of Sphingolipid Metabolism as a Contributing Factor in the Toxicity and Carcinogenicity of Fumonisins,Natural Toxins 4, 3–15.

    Article  PubMed  CAS  Google Scholar 

  32. Bernert, J.T., and Ullman, M.D. (1981) Biosynthesis of Sphingomyelin from Erythro-Ceramides and Phosphatidylcholine by a Microsomal Cholinephosphotransferase,Biochim. Biophys. Acta 666, 99–109.

    PubMed  CAS  Google Scholar 

  33. Linardic, C.M., and Hannun, Y.A. (1994) Identification of a Distinct Pool of Sphingomyelin Involved in the Sphingomyelin Cycle,J. Biol. Chem. 269, 23530–23537.

    PubMed  CAS  Google Scholar 

  34. Tamiya-Koizumi, K., Umekawa, H., Yoshida, S., and Kojima, K. (1989) Existence of Mg2+-Dependent, Neutral Sphingomyelinase in Nuclei of Rat Ascites Hepatoma Cells,J. Biochem. (Tokyo) 106, 593–598.

    CAS  Google Scholar 

  35. Jayadev, S., Linardic, C.M., and Hannun, Y.A. (1994) Identification of Arachidonic Acid as a Mediator of Sphingomyelin Hydrolysis in Response to Tumor Necrosis Factor Alpha,J. Biol. Chem. 269, 5757–5763.

    PubMed  CAS  Google Scholar 

  36. Liu, B., and Hannun, Y.A. (1997) Inhibition of the Neutral Magnesium-Dependent Sphingomyelinase by Glutathione,J. Biol. Chem. 272, 16281–16287.

    Article  PubMed  CAS  Google Scholar 

  37. Tomiuk, S., Hofmann, K., Nix, M., Zumbansen, M., and Stoffel, W. (1998) Cloned Mammalian Neutral Sphingomyelinase: Functions in Sphingolipid Signaling?Proc. Natl. Acad. Sci. USA 95, 3638–3643.

    Article  PubMed  CAS  Google Scholar 

  38. Yamanaka, T., and Suzuki, K. (1982) Acid Sphingomyelinase of Human Brain: Purification to Homogeneity,J. Neurochem. 38, 1753–1764.

    Article  PubMed  CAS  Google Scholar 

  39. Schutze, S., Pothoff, K., Machleidt, T., Berkovic, D., Wiegmann, K., and Kronke, M. (1992) TNF Activates NF-kB by Phosphatidylcholine-Specific Phospholipase C-Induced “Acidic” Sphingomyelin Breakdown,Cell 71, 765–776.

    Article  PubMed  CAS  Google Scholar 

  40. Cifone, M.G., De Maria, R., Roncaioli, P., Rippo, M.R., Azuma, M., Lanier, L.L., Santoni, A., and Testi, R. (1994) Apoptotic Signaling Through CD95 (Fas/APO-1) Activates an Acidic Sphingomyelinase,J. Exp. Med. 180, 1547–1552.

    Article  PubMed  CAS  Google Scholar 

  41. Andrieu, N., Salvayre, R., and Levade, T. (1994) Evidence Against Involvement of the Acid Lysosomal Sphingomyelinase in the Tumor-Necrosis-Factor- and Interleukin-1-Induced Sphingomyelin Cycle and Cell Proliferation in Human Fibroblasts,Biochem. J. 303, 341–345.

    PubMed  CAS  Google Scholar 

  42. Sugita, M., Dulaney, J.T., and Moser, H.W. (1972) Ceramidase Deficiency in Farber’s Disease (Lipogranulomatosi),Science 178, 1100–1102.

    Article  PubMed  CAS  Google Scholar 

  43. Koch, J., Gartner, S., Li, C.-M., Quintern, L.E., Bernardo, K., Levran, O., Schnabel, D., Desnick, R.J., Schuchman, E.H., and Sandhoff, K. (1996) Molecular Cloning and Characterization of a Full-length Complementary DNA Encoding Human Acid Ceramidase,J. Biol. Chem. 271, 33110–33115.

    Article  PubMed  CAS  Google Scholar 

  44. McKay, C. (1997) Ceramidase and Signal Transduction, inSphingolipid-Mediated Signal Transduction (Hannun, Y.A., ed.) pp. 173–181, MBIU-R.G. Landes Company, Austin, TX.

    Google Scholar 

  45. Gatt, S. (1963) Enzymic Hydrolysis and Synthesis of Ceramides,J. Biol. Chem. 238, PC3131-PC3133.

    CAS  Google Scholar 

  46. Bernardo, K., Hurwitz, R., Zenk, T., Desnick, R.J., Ferlinz, K., Schuchman, E.H., and Sandhoff, K. (1995) Purification, Characterization, and Biosynthesis of Human Acid Ceramidase,J. Biol. Chem. 270, 11098–11102.

    Article  PubMed  CAS  Google Scholar 

  47. Hazer, K., Paton, B.C., Poulos, A., Kustermann-Kuhn, B., Roggendorf, W., Grisar, T., and Popp, M. (1989) Sphingolipid Activator Protein Deficiency in a 16-Week-Old Atypical Gaucher Disease Patient and His Fetal Sibling: Biochemical Signs of Combined Sphingolipidoses,Eur. J. Pediatr. 149, 31–39.

    Article  Google Scholar 

  48. Yada, Y., Higuchi, K., and Imokawa, G. (1995) Purification and Biochemical Characterization of Menbrane Bound Epidermal Ceramidases from Guinea Pig Skin,J. Biol. Chem. 270, 12677–12684.

    PubMed  CAS  Google Scholar 

  49. Azuma, N., O’Brien, J.S., Moser, H.W., and Kishimotor, Y. (1994) Stimulation of Acid Ceramidase Activity by Saposin D,Arch. Biochem. Biophys. 311, 354–357.

    Article  PubMed  CAS  Google Scholar 

  50. Bielawska, A., Greenberg, M.S., Perry, D., Jayadev, S., Shayman, J.A., McKay, C., and Hannun, Y.A. (1996) (1S,2R)-d-Erythro-2-(N-myristoylamino)-1-phenyl-1-propanol as an Inhibitor of Ceramidase,J. Biol. Chem. 271, 12646–12654.

    Article  PubMed  CAS  Google Scholar 

  51. Stoffel, W., and Melzner, I. (1980) Studiesin vitro on the Biosynthesis of Ceramide and Sphingomyelin. A Reevaluation of Proposed Pathways,Hoppe-Seyler’s Z. Physiol. Chem. 361, 755–771.

    PubMed  CAS  Google Scholar 

  52. Sribney, M., and Kennedy, E.P. (1958) The Enzymatic Synthesis of Sphingomyelin,J. Biol. Chem. 233, 1315–1322.

    PubMed  CAS  Google Scholar 

  53. Brady, R.O., Bradley, R.M., Young, O.M., and Kaller, H. (1965) An Alternative Pathway for the Enzymatic Synthesis of Sphingomyelin,J. Biol. Chem. 240, PC3693-PC3694.

    Google Scholar 

  54. Diringer, H., Marggraf, W.D., Koch, M.A., and Anderer, F.A. (1972) Evidence for a New Biosynthetic Pathway of Sphingomyelin in SV 40 Transformed Mouse Cells,Biochim. Biophys. Acta 47, 1345–1352.

    CAS  Google Scholar 

  55. Futerman, A.H., Stieger, B., Hubbard, A.L., and Pagano, R.E. (1990) Sphingomyelin Synthesis in Rat Liver Occurs Predominantly at theCis and Medial Cisternae of the Golgi Apparatus,J. Biol. Chem. 265, 8650–8657.

    PubMed  CAS  Google Scholar 

  56. Marggraf, W.D., and Kanfer, J.N. (1987) Kinetic and Topographical Studies of the Phosphatidylcholine:Ceramide Choline Phosphotransferase in Plasma Membrane Particles from Mouse Ascites Cells,Biochim. Biophys. Acta 897, 57–68.

    Article  PubMed  CAS  Google Scholar 

  57. Marggraf, W.D., Anderer, F.A., and Kanfer, J. (1981) The Formation of Sphingomyelin from Phosphatidylcholine in Plasma Membrane Preparations from Mouse Fibroblasts,Biochim. Biophys. Acta 664, 61–73.

    PubMed  CAS  Google Scholar 

  58. Vos, J.P., Giudici, M.L., Van der Bijl, P., Magni, P., Marchesini, S., Van Golde, L.M.G., and Lopes-Cardozo, M. (1995) Sphingomyelin Is Synthesized at the Plasma Membrane of Oligodendrocytes and by Purified Myelin Membranes: A Study with Fluorescent- and Radio-Labelled Ceramide Analogues,FEBS Lett. 368, 393–396.

    Article  PubMed  CAS  Google Scholar 

  59. Miro Obradors, M.J., Sillence, D., Howitt, S., and Allan, D. (1997) The Subcellular Sites of Sphingomyelin Synthesis in BHK Cells,Biochim. Biophys. Acta 1359, 1–12.

    Article  PubMed  CAS  Google Scholar 

  60. Luberto, C., and Hannun, Y.A. (1998) Sphingomyelin Synthase, a Potential Regulator of Intracellular Levels of Ceramide and Diacylglycerol During SV40 Transformation,J. Biol. Chem. 273, 14550–14559.

    Article  PubMed  CAS  Google Scholar 

  61. Lacal, J.C., Moscat, J., and Aaronson, S.A. (1987) Novel Source of 1,2-Diacylglycerol Elevated in Cells Transformed by Ha-ras Oncogene,Nature 313, 269–272.

    Article  Google Scholar 

  62. Santana, P., Pena, L.A., Haimovitz-Friedman, A., Martin, S., Green, D., McLoughlin, M., Cordin-Cardo, C., Schuchman, E.H., Fuks, Z., and Kolesnick, R. (1996) Acid Sphingomydinase-Deficient Human Lymphoblasts and Mice are Defective in Radiation-Induced Apoptosis,Cell 86, 189–199.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf A. Hannun.

About this article

Cite this article

Luberto, C., Hannun, Y.A. Sphingolipid metabolism in the regulation of bioactive molecules. Lipids 34 (Suppl 1), S5–S11 (1999). https://doi.org/10.1007/BF02562221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02562221

Keywords

Navigation