Skip to main content
Log in

Enumeration of three-dimensional convex polygons

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

A self-avoiding polygon (SAP) on a graph is an elementary cycle. Counting SAPs on the hypercubic lattice ℤd withd≥2, is a well-known unsolved problem, which is studied both for its combinatorial and probabilistic interest and its connections with statistical mechanics. Of course, polygons on ℤd are defined up to a translation, and the relevant statistic is their perimeter.

A SAP on ℤd is said to beconvex if its perimeter is “minimal”, that is, is exactly twice the sum of the side lengths of the smallest hyper-rectangle containing it. In 1984, Delest and Viennot enumerated convex SAPs on the square lattice [6], but no result was available in a higher dimension.

We present an elementar approach to enumerate convex SAPs in any dimension. We first obtain a new proof of Delest and Viennot's result, which explains combinatorially the form of the generating function. We then compute the generating function for convex SAPs on the cubic lattice. In a dimension larger than 3, the details of the calculations become very cumbersome. However, our method suggests that the generating function for convex SAPs on ℤd is always a quotient ofdifferentiably finite power series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Baxter, Partition function of the three-dimensional Zamolodchikov model, Phys. Rev. Lett.53 (1984) 1795–1798.

    Article  MathSciNet  Google Scholar 

  2. M. Bousquet-Mélou, Codage des polyominos convexes et équations pour l'énumération suivant l'aire, Discrete Appl. Math.48 (1994) 21–43.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Bousquet-Mélou, A method for the enumeration of various classes of column-convex polygons, Discrete Math.154 (1996) 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Brak, A.J. Guttmann, and I.G. Enting, Exact solution of the row-convex polygon perimeter generating function, J. Phys. A: Math. Gen.23 (1990) 2319–2326.

    Article  MathSciNet  MATH  Google Scholar 

  5. M.-P. Delest, Generating functions for column-convex polyominoes, J. Combin. Theory Ser. A48 (1988) 12–31.

    Article  MathSciNet  Google Scholar 

  6. M.-P. Delest and G. Viennot, Algebraic languages and polyominoes enumeration, Theoret. Comput. Sci.34 (1984) 169–206.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Denef and L. Lipschitz, Power series solution of algebraic differential equations, Math. Ann.267 (1984) 213–238.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Dhar, Exact solution of a directed-site animals-enumeriration problem in three dimensions, Phys. Rev. Lett.51 (1983) 853–856.

    Article  MathSciNet  Google Scholar 

  9. J.W. Essam, Exact enumeration of parallel walks on directed lattices, J. Phys. A: Math. Gen.26 (1993) L863-L869.

    Article  MathSciNet  Google Scholar 

  10. I.G. Enting, A.J. Guttmann, L.B. Richmond, and N.C. Wormald, Enumeration of almostconvex polygons on the square lattice, Random Structures and Algorithms3 (1992) 445–461.

    MathSciNet  MATH  Google Scholar 

  11. J.-M. Fédou, Sommes de carrés de multinomiaux, preprint, 1993. http://www.labri.u-bordeaux.fr/~fedou

  12. J.-M. Fédou and N. Rouillon, Polyominos etq-analogues de fonctions de Bessel, une preuve combinatoire, In: Proc. 7th Conf. Formal Power Series and Algebraic Combinatorics, Marne-la-Vallée, France, B. Leclerc and J.-Y. Thibon, Eds., June 1995.

  13. S. Feretić, A new way of counting the column-convex polyominoes by perimeter, In: Proc. 7th Conf. Formal Power Scries and Algebraic Combinatorics, Marne-la-Vallée, France, B. Leclerc and J.-Y. Thibon, Eds., June 1995.

  14. P. Flajolet, Pólya festoons, Research Report INRIA 1991, Rocquencourt, France, 1991.

  15. P. Flajolet and A. Odlyzko, Singularity analysis of generating functions, SIAM J. Discrete Math.3 (1990) 216–240.

    Article  MathSciNet  MATH  Google Scholar 

  16. I. Gessel, A noncommutative generalization andq-analog of the Lagrange inversion formula, Trans. Amer. Math. Soc.257 (1980) 455–481.

    Article  MathSciNet  MATH  Google Scholar 

  17. I. Gessel, On the number of convex polyominoes, preprint, 1990.

  18. A.J. Guttmann and T. Prellberg, Staircase polygons, elliptic integrals, Heun functions and lattice Green functions, Phys. Rev. E47 (1993) R2233-R2236.

    Article  Google Scholar 

  19. J.M. Hammersley, On the rate of convergence to the connective constant of the hypercubical lattice, Quart. J. Math. Oxford Ser. 212 (1961) 250–256.

    MathSciNet  MATH  Google Scholar 

  20. J.M. Hammersley and D.J.A. Welsh, Further results on the rate of convergence to the connective constant of the hypercubic lattice, Quart. J. Math. Oxford Ser. 213 (1962) 108–110.

    MathSciNet  MATH  Google Scholar 

  21. P. Henrici, Applied and Computational Complex Analysis, Vol. II, John Wiley & Sons, New-York, 1977.

    Google Scholar 

  22. B.D. Hughes, Random Walks and Random Environments. Vol. I, Random walks, Clarendon Press, Oxford, 1995.

    Google Scholar 

  23. G.S. Joyce, On the cubic lattice Green functions, Proc. Roy. Soc. London Ser. A445 (1994) 463–477.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Kim, The number of convex polyominoes with given perimeter, Discrete Math.70 (1988) 47–51.

    Article  MathSciNet  MATH  Google Scholar 

  25. K.Y. Lin and S.J. Chang, Rigorous results for the number of convex polygons on the square and honeycomb lattices, J. Phys. A: Math. Gen.21 (1988) 2635–2642.

    Article  MathSciNet  Google Scholar 

  26. L. Lipschitz, D-finite power series, J. Algebra122 (1989) 353–373.

    Article  MathSciNet  Google Scholar 

  27. P.A. MacMahon, Combinatory Analysis, Vols. I and II, Cambridge University Press, Cambridge, pp. 1915–1916, reprinted 1960.

    Google Scholar 

  28. N. Madras and G. Slade, The Self-Avoiding Walk, Probability and its Applications, Birkhäuser, Boston, 1993.

    Google Scholar 

  29. G. Pólya, On the number of certain lattice polygons, J. Combin. Theory6 (1969) 102–105.

    MATH  Google Scholar 

  30. B. Salvy and P. Zimmermann, GFUN: a Maple package for the manipulation of generating and holonomic functions in one variable, ACM Trans. Math. Software20 (1994) 163–167.

    Article  MATH  Google Scholar 

  31. R.P. Stanley, Differentiably finite power series, Europ. J. Combin.1 (1980) 175–188.

    MathSciNet  MATH  Google Scholar 

  32. N.C. Wormald, Private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bousquet-Mélou, M., Guttmann, A.J. Enumeration of three-dimensional convex polygons. Annals of Combinatorics 1, 27–53 (1997). https://doi.org/10.1007/BF02558462

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02558462

AMS Subject Classification

Keywords

Navigation