Skip to main content
Log in

False vacuum decay in the de sitter space-time

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

In the example of the decay of a metastable scalar field state (the conformal vacuum of scalar particles over a false classical vacuum) in the background de Sitter metric, we propose a method to account for the initial quantum field state in the semiclassical calculation of the path integral in a curved space-time. Using this method, we justify the Coleman-De Luccia approach to calculating the decay probability. We interpret the Hawking-Moss instanton as a limit of constrained instantons. We find that the inverse process of the true vacuum going into a false one can occur in the de Sitter space and find the expression for the corresponding probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Voloshin, I. Yu. Kobzarev, and L. V. Okun',Sov. J. Nucl. Phys.,20, 644 (1975).

    Google Scholar 

  2. S. Coleman,Phys. Rev. D,15, 2929 (1977).

    Article  ADS  Google Scholar 

  3. C. G. Callan and S. Coleman,Phys. Rev. D,16, 1792 (1977).

    ADS  Google Scholar 

  4. S. Coleman, V. Glaser, and A. Martin,Commun. Math. Phys.,58, 211 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Coleman and F. De Luccia,Phys. Rev. D,21, 3305 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  6. A. H. Guth and E. Weinberg,Nucl. Phys. B,212, 321 (1983).

    Article  ADS  Google Scholar 

  7. S. W. Hawking and I. G. Moss,Nucl. Phys. B,224, 180 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko,Quantum Effects in Strong Background Fields [in Russian], Atomizdat, Moscow (1980).

    Google Scholar 

  9. N. D. Birell and P. C. W. Davies,Quantum Fields in Curved Space, Cambridge Univ. Press, Cambridge (1982).

    Google Scholar 

  10. A. D. Linde,Nucl. Phys. B,216, 421 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  11. A. A. Starobinskii, “Cosmological models with the intermediate de Sitter stage: theory and observed implications,” in:Fundamental Interactions (V. N. Ponomarev, ed.) [in Russian] (Inter-University Collection of Works), MSPI, Moscow (1984), p. 55.

    Google Scholar 

  12. A. S. Goncharov and A. D. Linde,Sov. J. Part. Nucl.,17, 369 (1987).

    MathSciNet  Google Scholar 

  13. S. W. Hawking and G. F. R. Ellis,The Large Scale Structure of Space-Time, Cambridge Univ. Press, Cambridge (1973).

    MATH  Google Scholar 

  14. A. D. Linde,Physics of Elementary particles and Inflationary Cosmology [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  15. V. A. Rubakov, D. T. Son, and P. G. Tinyakov,Phys. Lett. B,278 279 (1992); A. N. Kuznetsov and P. G. Tinyakov,Phys. Rev. D.,56, 1156 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  16. I. Affleck,Nucl. Phys. B,191, 429 (1981).

    Article  ADS  Google Scholar 

  17. A. D. Linde,Phys. Lett. B,131, 330 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  18. N. Deruelle,Mod. Phys. Lett. A,4, 1297 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 120, No. 3, pp. 451–472, September, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubakov, V.A., Sibiryakov, S.M. False vacuum decay in the de sitter space-time. Theor Math Phys 120, 1194–1212 (1999). https://doi.org/10.1007/BF02557243

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02557243

Keywords

Navigation