Skip to main content
Log in

Short-term course of 1,25(OH)2D3 stimulates osteoblasts but not osteoclasts in osteoporosis and osteoarthritis

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

We investigated the effect of short-term, 1,25-dihydroxyvitamin D3 therapy (4 μg/day for 4 days) on calcium metabolism in 27 postmenopausal women (11 cases with osteoporosis and 16 cases with osteoarthritis). Bone mass at the axial and appendicular skeleton was higher in osteoarthritis than in osteoporosis. Initial values of calcium metabolism were similar. Osteoporotic and osteoarthritic patients responded with a similar significant increase in serum osteocalcin (+61% and +54%, respectively), fasting urinary calcium excretion (+178% and +124%, respectively) and 24 hour calcium excretion (+148% and +142%, respectively). Parathyroid hormone (PTH) levels decreased significantly in both groups (−30% and −18%, respectively). Osteoclastic bone resorption, evaluated by urinary hydroxyproline excretion, was not stimulated in either group. We conclude that in osteoporosis and also in osteoarthritis (1) 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) stimulation of osteoblast function is similar in production of osteocalcin; (2) the vitamin D target tissues react adequately to 1,25(OH)2D3 stimulation; (3) short-term high dose of 1,25(OH)2D3 does not stimulate bone resorption; and (4) the differences in bone mass between osteoarthritis and osteoporosis are not related to an alteration of the responsiveness to stimulation by 1,25 (OH)2D3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen TL, Cone CM, Morey-Holton E, Feldman D (1983) 1 alpha, 25-dihydroxyvitamin D3 receptors in cultured rat osteoblast-like cells. Glucocorticoid treatment increases receptor content. J Biol Chem 258:4350–4355

    PubMed  CAS  Google Scholar 

  2. Price PA, Baukol SA (1980) 1,25-dihydroxyvitamin D3 increases synthesis of the vitamin K-dependent bone protein by osteosarcoma cells. J Biol Chem 225:11660–11663

    Google Scholar 

  3. Zerwekh JE, Sakhaee, Pak CYC (1985) Short-term 1,25-dihydroxyvitamin D3 administration raises serum osteocalcin in patients with postmenopausal osteoporosis. J Clin Endocrinol Metab 60:615–617

    PubMed  CAS  Google Scholar 

  4. Duda RJ, Kumar R, Nelson KI, Zinsmeister AR, Mann KG, Riggs BL (1987) 1,25-dihydroxyvitamin D stimulation test for osteoblast function in normal and osteoporotic postmenopausal women. J Clin Invest 79:1249–1253

    PubMed  Google Scholar 

  5. Raisz LG, Trummel CL, Holick MF, DeLuca HF (1972) 1,25-dihydroxycholecalciferol: a potent stimulator of bone resorption in tissue culture. Science 175:768–769

    Article  PubMed  CAS  Google Scholar 

  6. Reynolds JJ, Nolick MF, DeLuca HF (1973) The role of vitamin D metabolites on bone resorption. Calcif Tissue Res 12:295–301

    Article  PubMed  CAS  Google Scholar 

  7. Holtrop ME, Cox KA, Clark MB, Holick MF, Anast CS (1981) 1,25-Dihydroxycholecalciferol stimulates osteoclasts in rat bones in the absence of parathyroid hormone. Endocrinology 108:2293–2301

    PubMed  CAS  Google Scholar 

  8. Frost HM (1981) Coherence treatment of osteoporosis. Orthop Clin North Am 12:649–669

    PubMed  CAS  Google Scholar 

  9. Parfitt AM (1988) Use of calciferol and its metabolites and analogues in osteoporosis. Current Status. Drugs 36:513–520

    CAS  Google Scholar 

  10. Pedrazzoni M, Palummeri E, Pioli G, Giotti G, Davoli L, Mantovani M, Passeri M (1989) Involutional osteoporosis and ADFR treatment: a controlled pilot study. Curr Ther Res 45:188–197

    Google Scholar 

  11. Parfitt AM (1990) ADFR, or coherence therapy, for osteoporosis. In: Hecton F, Mazess R (eds) Osteoporosis: physiological basis, assessment, and treatment, Elsevier Science Publishing Co, pp 315–321

  12. Byers PD, Contepenni CA, Farkas TA (1970) A post mortem study of the hip joint. Ann Rheum Dis 29:15–31

    PubMed  CAS  Google Scholar 

  13. Solomon L, Schnitzler CM, Browett JP (1981) Osteoarthritis of the hip: the patient behind the disease. Ann Rheum Dis 41:118–125

    Google Scholar 

  14. Pogrund H, Rutemberg M, Makin M, Robin G, Menczel J, Steinberg R (1982) Osteoarthritis of the hip joint and osteoporosis. Clin Orthop Rel Res 164:130–135

    Google Scholar 

  15. Weintroub S, Papo J, Ashkenazi M, Tardiman R, Weissman SL, Salamoi R (1982) Osteoarthritis of the hip and fractures of the proximal end of the femur. Acta Orthop Scand 53:261–264

    PubMed  CAS  Google Scholar 

  16. Foss MVL, Byers PD (1972) Bone density, osteoarthritis of the hip and fracture of the upper end of the femur.Ann Rheum Dis 31:259–264

    PubMed  CAS  Google Scholar 

  17. Roh YS, Dequeker J, Mulier JC (1973) Osteoarthritis at the hand skeleton in primary osteoarthrosis of the hip and in normal controls. Clin Orthop Rel Res 90:90–94

    Google Scholar 

  18. Roh YS, Dequeker J, Mulier JC (1973) Cortical bone remodeling and bone mass in primary osteoarthrosis of the hip. Invest Radiol 8:251–254

    Article  Google Scholar 

  19. Roh YS, Dequeker J, Mulier JC (1974) Bone mass in osteoarthrosis, measured in vivo by photon absorptiometry.J Bone Jt Surg 56:587–591

    CAS  Google Scholar 

  20. Roh YS, Dequeker J, Mulier JC (1974) Trabecular pattern of the upper end of the femur in primary osteoarthrosis and in symptomatic osteoporosis. J Belge Radiologie 57:89–94

    CAS  Google Scholar 

  21. Carlsson A, Nilsson BE, Westlin NE (1979) Bone mass in primary coxarthrosis. Acta Orthop Scand 50:187–189

    Article  PubMed  CAS  Google Scholar 

  22. Price T, Reeve J, Mitchell R, Hesp R (1983) Bone density in generalized osteoarthritis. Ann Rheum Dis 42:227–228

    Google Scholar 

  23. Gevers G, Dequeker J, Geusens P, Nyssen-Behets C, Dhem A (1989) Physical and histomorphological characteristics of iliac crest bone, according to osteoarthritis grade at the hand joints. Bone 10:173–178

    Article  PubMed  CAS  Google Scholar 

  24. Dequeker J, Goris P, Uytterhoeven R (1983) Osteoporosis and osteoarthritis (osteoarthrosis): anthropometric distinctions. JAMA 249:1448–1451

    Article  PubMed  CAS  Google Scholar 

  25. Geusens P, Dequeker J, Verstraeten A (1983) Age-related blood changes in hip osteoarthritis patients: a possible indicator of bone quality. Ann Rheum Dis 42:112–113

    PubMed  CAS  Google Scholar 

  26. Gevers G, Dequeker J, Geusens P, Verstraeten A, Vanderschueren D (1988) Serum bone Gla protein (osteocalcin) and other markers of bone mineral metabolism in postmenopausal osteoporosis and osteoarthritis. J Orthop Rheumatol 1:22–27

    Google Scholar 

  27. Dequeker J, Burssens A, Bouillon R (1982) Dynamics of growth hormone secretion in patienets with osteoporosis and in patients with osteoarthrosis. Hormone Res 16:353–356

    PubMed  CAS  Google Scholar 

  28. Fazzalari NL, Darracott J, Vernon-Roberts B (1985) Histomorphometric changes in the trabecular structure of a selected stress region in the femur in patients with osteoarthritis and fracture of the femoral neck. Bone 6:125–133

    Article  PubMed  CAS  Google Scholar 

  29. Meunier PJ, Sellami S, Briancon D, Edward C (1980) Histological heterogeneity of apparently idiopathic osteoporosis. In: Deluca HF, Frost HM, Jee WSS, Johnston CC, Parfitt AM (eds) Osteoporosis: recent advances in pathogenesis and treatment. University Park, Baltimore, pp 293–301

  30. Marie PJ, Sabbag A, de Vernejoul MC, Lomri A (1989) Osteocalcin and deoxyribonucleic acid synthesis in vitro and histomorphometric indices of bone formation in postmenopausal osteoporosis. J Clin Endocrinol Metab 69:272–279

    PubMed  CAS  Google Scholar 

  31. Kellgren JH (1963) Atlas of standard radiographs of arthritis. In: The epidemiology of chronic rheumatism, vol II. Blackwell/Oxford

  32. Bouillon R, De Moor P (1974) Parathyroid function in patients with hyper- or hypothyroidism. J Clin Endocrinol Metab 36:999–1004

    Google Scholar 

  33. Bouillon R, Van Kerckhove P, De Moor P (1976) Measurement of 25 hydroxyvitamin D3 in serum. Clin Chem 22:364–368

    PubMed  CAS  Google Scholar 

  34. Price PA, Nishimoto SK (1980) Radioimmunoassay for the vitamin K-dependent protein of bone and its discovery in plasma. Proc Natl Acad Sci USA 77:2234–2238

    Article  PubMed  CAS  Google Scholar 

  35. Gevers G, Devos P, De Roo M, Dequeker J (1986) Increased levels of osteocalcin (serum bone Gla-protein) in rheumatoid arthritis. Br J Rheum 25:260–262

    Article  CAS  Google Scholar 

  36. Haury H (1972) Zur routinemängen Bestimmung von Hydroxyproline in Harn. Z Klin Chem Biochem 10:25–30

    CAS  Google Scholar 

  37. Whiteman P (1973) The quantitative determination of glycosaminoglycans in urine with Alcian Blue 8GX. Biochem J 131:351–357

    PubMed  CAS  Google Scholar 

  38. Geusens P, Dequeker J, Verstraeten A, Nijs J (1986) Age-, sex- and menopause-related changes of vertebral and peripheral bone: population study using dual and single photon absorptiometry and radiogrammetry. J Nucl Med 27:1540–1549

    PubMed  CAS  Google Scholar 

  39. Gallacher JC, Riggs BL, Eisman J, Hamstra A, Arnaud SB, De Luca HF (1979) Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients. J Clin Invest 64:729–736

    Google Scholar 

  40. Brixen K, Nielsen HK, Mosekilde L, Flyvbjerg A (1990) A short course of recombinant human growth hormone treatment stimulates osteoblasts and activates bone remodeling in normal human volunteers. J Bone Min Res 5:609–618

    Article  CAS  Google Scholar 

  41. Spiess YH, Price PA, Deftoes JL, Manolagas SC (1986) Phenotype-associated changes in the effect of 1,25-dehydroxyvitamin D3 on alkaline phosphatase and bone gla protein of rat osteoblastic cells. Endocrinology 118:1340–1346

    Article  PubMed  CAS  Google Scholar 

  42. Slootweg MC, van Buul-Offers SC, Hermann-Erlee MPM, van der Meer JM, Duursma SA (1988) Growth hormone is mitogenic for fetal mouse osteoblasts but not for undifferentiated bone cells. J Endocrinol 116:R11-R13

    Article  PubMed  CAS  Google Scholar 

  43. Bell NH, Epstein S, Greene A, Shary J, Oexmann J, Shaw S (1985) Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Invest 76:370–373

    Article  PubMed  CAS  Google Scholar 

  44. Bell NH, Greene A, Epstein S, Oexmann MJ, Shaw S, Shary J (1985) Evidence for alteration of the vitamin D-endocrine system in blacks. J Clin Invest 76:470–473

    PubMed  CAS  Google Scholar 

  45. Gennari C, Gonelli S, Nardi P, Nami R, Montagnani M, Piolini M (1986) 1,25-Dihydroxycholecalciferol and salmon clacitonin for coherent therapy of osteoporosis (abstract 257). J Bone Min Res (suppl 1)

  46. Ott SM, Chesnut CH III (1989) Calcitriol treatment is not effective in postmenopausal osteoporosis. Ann Intern Med 110:267–274

    PubMed  CAS  Google Scholar 

  47. Aloia JF, Vaswani A, Yeh J, Ellis K, Cohn SH (1987) Treatment of postmenopausal osteoporosis with calcitriol. In: Christiansen C, Johansen JS, Riis BJ (eds) Osteoporosis 1987. Osteopress, Copenhagen pp 850–852

    Google Scholar 

  48. Gallagher JC, Jerpbak CM, Jee WSS, Johnson KA, DeLuca HF, Riggs BL (1982) 1,25-dihydroxyvitamin D3: short- and long-term effects on bone and calcium metabolism in patients with postmenopausal osteoporosis. Proc Natl Acad Sci USA 79:3325–3329

    Article  PubMed  CAS  Google Scholar 

  49. Riggs BL, Nelson KI (1985) Effect of long-term treatment with calcitriol on calcium absorption and mineral metabolism in postmenopausal osteoporosis. J Clin Endocrinol Metab 61:457–461

    PubMed  CAS  Google Scholar 

  50. Eriksen EF (1986) Normal and pathological remodeling of human trabecular bone: three-dimensional reconstruction of the remodeling sequence in normals and in metabolic bone disease. Endocrine Rev 7:379–408

    CAS  Google Scholar 

  51. Doyle F, Brown J, Lachance C (1970) Relation between bone mass and muscle weight. Lancet ii:391–393

    Article  Google Scholar 

  52. Lindsay R, Hart DM, Clark DM (1984) The minimum effective dose of estrogen for prevention of postmenopausal bone loss. Obstet Gynecol 63:759–763

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geusens, P., Vanderschueren, D., Verstraeten, A. et al. Short-term course of 1,25(OH)2D3 stimulates osteoblasts but not osteoclasts in osteoporosis and osteoarthritis. Calcif Tissue Int 49, 168–173 (1991). https://doi.org/10.1007/BF02556112

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02556112

Keywords

Navigation