Skip to main content
Log in

Physical activity effects on bone metabolism

  • Factors Affecting Bone Metabolism and Osteoporosis
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The incidence of osteoporotic fractures rises exponentially with age and is increasing faster than the demographic increase in the aging population. Physical activity has great potential to reduce the risk for osteoporotic fractures. Three independent but interactive factors contribute to the risk of fractures: bone strength, the risk of falling, and the effectiveness of neuromuscular response that protects the skeleton from injury. Exercise can reduce fracture risk not only by preventing bone loss, but by decreasing the risk of falling and the force of impact by improving strength, flexibility, balance, and reaction time. Extreme inactivity causes rapid bone loss of up to 40%, while athletic activity results in bone hypertrophy of up to 40%. Exercise intervention programs have reduced bone loss or increased bone mass in both men and women of various ages and initial bone status. These benefits have been shown for arm bone mineral content, total body calcium, spine, calcium bone index, tibia, and calcaneus. In both middle-aged and elderly women, physical activity intervention reduced bone loss or increased bone mass. The mechanisms for maintenance of skeletal integrity rely on a cellular response to hormonal and mechanical load stimuli. Studies in animal models show that training affects cellular activity. In osteoporotics, cellular erosion is increased and mineral apposition rate (MAR) decreased compared with normal age-matched controls. In contrast to this, sows trained on a treadmill 20 min per day for 20 weeks had greater active periosteal surface, periosteal MAR, and osteonal MAR than untrained sows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riggs BL, Wahner HW, Dunn WL, Mazess RB, Offord KP, Melton LJ III (1981) Differential changes in bone mineral density of the appendicular and axial skeleton with aging. J Clin Invest 67:328–335

    Article  PubMed  CAS  Google Scholar 

  2. Erickson SAV, Isberg BO, Lindgren JU (1989) Prediction of vertebral strength by dual photon absorptiometry and quantitative computed tomography. Calcif Tissue Int 44:243–250

    Google Scholar 

  3. Martin AD, Silverthorn KG, Houston CS, Bernhardson S, Wajda A, Roos LL (1991) Trends in fracture of the proximal femur in two million Canadians, 1972 to 1984. Clin Orthop Rel Res 266:111–118

    Google Scholar 

  4. Johnell O, Nilsson B, Obrant K, Sernbo I (1984) Age and sex patterns of hip fracture—changes in 30 years. Acta Orthop Scand 55:290–292

    Article  PubMed  CAS  Google Scholar 

  5. Riggs BL, Melton LJ III (1986) Involutional osteoporosis. N Engl J Med 315:1676–1684

    Article  Google Scholar 

  6. Johnston CC, Melton LJ, Lindsay R, Eddy DM (1989) Clinical indications for bone mass measurements. J Bone Min Res 4 (Suppl 2):1–28

    Google Scholar 

  7. NIH Osteoporosis Consensus Conference (1984) JAMA 252:799–802

    Google Scholar 

  8. Cummings SR (1987) Epidemiology of osteoporotic fractures. In: Genant HK, (ed), Osteoporosis update 1987. Radiology Research and Education Foundation, San Francisco, CA, pp 8–12

    Google Scholar 

  9. Cooper C, Barker DJ, Morris J, Briggs RS (1987) Osteoporosis, falls and age in fracture of the proximal femur. Br Med J 295:13–15

    CAS  Google Scholar 

  10. Smith EL, Gilligan C (1989) Mechanical forces and bone. In: Peck WA (ed) Bone and Mineral Research 6. Elsevier, Amsterdam, pp 139–173

    Google Scholar 

  11. Kiratli BJ (1989) Skeletal change with disuse. Am J Phys Anthropol 78:253 (abstract)

    Google Scholar 

  12. Dalen N, Olsson KE (1974) Bone mineral content and physical activity. Acta Orthop Sca 45:170–174

    CAS  Google Scholar 

  13. Nilsson BE, Westlin NE (1971) Bone density in athletes. Clin Orthop Rel Res 77:179–182

    CAS  Google Scholar 

  14. Jacobson PC, Beaver W, Grubb SA, Taft TN, Talmage RV (1984) Bone density in women: college athletes and older athletic women. J Orthop Res 2:328–332

    Article  PubMed  CAS  Google Scholar 

  15. Black-Sandler R, LaPorte RE, Sashin D, Kuller LH, Sternglass E, Cauley JA, Link MM (1982) Determinants of bone mass in menopause. Prev Med 11:269–280

    Article  PubMed  CAS  Google Scholar 

  16. Emiola L, O'Shea P (1978) Effects of physical activity and nutrition on bone density measured by radiographic techniques. Nutr Rep Int 17:669–681

    CAS  Google Scholar 

  17. Stillman RJ, Lohman TH, Slaughter MH, Massey BH (1986) Physical activity and bone mineral content in women aged 30 to 85 years. Med Sci Sports Exerc 18:576–580

    PubMed  CAS  Google Scholar 

  18. Brewer V, Meyer BM, Keele MS, Upton SJ, Hagan RD (1983) Role of exercise in prevention of involutional bone loss. Med Sci Sports Exerc 15:445–449

    PubMed  CAS  Google Scholar 

  19. Smith EL, Reddan W, Smith PE (1981) Physical activity and calcium modalities for bone mineral increase in aged women. Med Sci Sports Exerc 13:60–64

    PubMed  CAS  Google Scholar 

  20. Smith EL, Gilligan C, Shea MM, Ensign CP, Smith PE (1989) Exercise reduces bone involution in middle-aged women. Calcif Tissue Int 44:312–321

    PubMed  CAS  Google Scholar 

  21. Simkin A, Ayalon J, Leichter I (1986) Increased trabecular bone density due to bone-loading exercises in postmenopausal osteoporotic women. Calcif Tissue Int 40:59–63

    Google Scholar 

  22. White MK, Martin RB, Yeater RA, Butcher RL, Radin EL (1984) The effects of exercise on the bones of postmenopausal women. Int Orthop 7:209–214

    Article  PubMed  CAS  Google Scholar 

  23. Rikli RE, McManis BG (1990) Effects of exercise on bone mineral content in postmenopausal women. Res Q 61:243–249

    CAS  Google Scholar 

  24. Aloia JF, Cohn SH, Ostuni J, Cane R, Ellis K (1978) Prevention of involutional bone loss by exercise. Ann In Med 89:356–358

    CAS  Google Scholar 

  25. Dalsky GP, Stocke KS, Ehsani AA, Slatopolsky E, Lee WC Birge SJ (1988) Weight-bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Intern Med 108:824–828

    PubMed  CAS  Google Scholar 

  26. Gleeson PG, Protas EJ, LeBlanc AD, Schneider VS, Evans HJ (1990) Effects of weight lifting on bone mineral density in premenopausal women. J Bone Min Res 5:153–158

    CAS  Google Scholar 

  27. Krolner B, Toft B, Nielson SP, Tondevold E (1983) Physical exercise as prophylaxis against involutional vertebral bone loss: a controlled trial. Clin Sci 64:541–546

    PubMed  CAS  Google Scholar 

  28. Chow RK, Harrison JE, Sturbridge W, Josse R, Murray TM, Bayley A, Dornan J, Hammond T (1987) The effect of exercise on bone mass of osteoporotic patients on fluoride treatment. Clin Invest Med 10:59–63

    PubMed  CAS  Google Scholar 

  29. Chow RK, Harrison JE, Notarius C (1987) Effect of two randomised exercise programmes on bone mass of healthy postmenopausal women. Br Med J 292:607–610

    Google Scholar 

  30. Margulies JY, Simkin A, Leichter I, Bivas A, Steinberg R, Giladi M, Stein M, Kashtan H, Milgrom C (1986) Effect of intense physical activity on the bone-mineral content in the lower limbs of young adults. J Bone Joint Surg 68A:1090–1093

    Google Scholar 

  31. Rundgren A, Aniansson A, Ljungberg P, Wetterqvist H (1984) Effects of a training programme for elderly people on mineral content of the heel bone. Arch Gerontol Geriatr 3:243–248

    Article  PubMed  CAS  Google Scholar 

  32. Beverly MC, Rider TA, Evans J, Smith R (1989) Local bone mineral response to brief exercise that stresses the skeleton. Br Med J 299:233–235

    Article  CAS  Google Scholar 

  33. Cavanaugh DJ, Cann CE (1988) Brisk walking does not stop bone loss in postmenopausal women. Bone 9:201–204

    Article  PubMed  CAS  Google Scholar 

  34. Ismail F, Epstein S, Gorman K, Posner J, Windsor LA, Makler T, Movsowitz C (1989) The influence of exercise on bone mineral metabolism in the elderly. J Bone Min Res 4 (Suppl 1):S231 (abstract)

    Google Scholar 

  35. Moroz D, Sale D, Webber C (1989) The effect of intensive training on axial and appendicular bone mineral in normal postmenopausal women. (abstract). J Bone Min Res 4 (Suppl 1):S233

    Google Scholar 

  36. Rockwell JC, Sorenson AM, Stock J, Michaels J, Baran DT (1989) Weight training does not increase bone mass in premenopausal women. J Bone Min Res 4 (Suppl 1):S188 (abstract)

    Google Scholar 

  37. Sandler RB, Cauley JA, Hom DL, Sashin D, Kriska AM (1987) The effects of walking on the cross-sectional dimensions of the radius in postmenopausal women. Calcif Tissue Int 41:65–69

    Article  PubMed  CAS  Google Scholar 

  38. Sinaki M, Wahner HW, Offord KP, Hodgson SF (1989) Efficacy of nonloading exercises in prevention of vertebral bone loss in postmenopausal women: a controlled trial. Mayo Clin Proc 64:762–769

    PubMed  CAS  Google Scholar 

  39. Frost HM (1985) The pathomechanics of osteoporoses. Clin Orthop 200:198–225

    PubMed  Google Scholar 

  40. Lanyon LE (1989) Strain-related bone modeling and remodeling Top Geria Rehabil 4:13–24

    Google Scholar 

  41. Eriksen EF, Hodgson SF, Eastell R, Cedel SL, O'Fallon WM, Riggs BL (1990) Cancellous bone remodeling in type I (postmenopausal) osteoporosis: quantitative assessment of rates of formation, resorption and bone loss at tissue and cellular levels. J Bone Min Res 5:311–319

    Article  CAS  Google Scholar 

  42. Raab DM, Smith EL, Crenshaw TD, Thomas DP (1990) Bone mechanical properties after exercise training in young and old rats. J Appl Physiol 68:130–134

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, E.L., Gilligan, C. Physical activity effects on bone metabolism. Calcif Tissue Int 49 (Suppl 1), S50–S54 (1991). https://doi.org/10.1007/BF02555089

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02555089

Key words

Navigation