Skip to main content
Log in

Computer simulation of thirst and water balance

  • Published:
Medical and biological engineering Aims and scope Submit manuscript

Abstract

The body water, alimentary exchange, renal control, and drinking sub-systems involved in water regulation in the rat were simulated using a digital computer. For each subsystem, coefficients and time constants were fitted to published data, and the calculations closely followed a physiological understanding of the mechanisms in question. Experimental data were then obtained for the drinking and renal response to injections and continuous infusions of hypertonic saline in rats, and the overall performance of the model was tested by comparing its response to these experimental results. Agreement was good for these and other results, indicating that the model adquately takes account of the major variables in the regulation of body water. Manipulations of the model and comparisons with rats indicate the necessity for short term oral and gastric feedback, and for a thirst threshold.

Sommaire

L'eau du corps, les échanges alimentaires, la régulation rénale et les sous-systèmes de boire impliqués dans la régulation de l'eau chez le rat, ont été simulés en utilisant un ordinateur digital. Pour chaque sous-système les constantes des coefficients et du temps furent ajustés aux données publiées et les calculations suivirent de près la compréhension physiologique des mécanismes en question. Puis, des données expérimentales furent obtenues pour le boire et la réaction rénale aux injections et aux infusions continuelles de sérum hypertonique chez les rats et aussi l'action globale du modèle furent vérifiées, en comparant sa réaction avec les résultats expérimentaux. La comparaison pour ces résultats et autres a été bonne, en indiquant que le modèle tient compte en juste proportion de variables majeures dans la régulation de l'eau du corps. Les manipulations du modèle et les comparaisons avec les rats indiquent la nécessité pour des rétro-actions orales et gastriques à court terme et pour un seuil de la soif.

Zusammenfassung

Es wurden der Wasserbestand im Körper von Ratten, die Nahrungsumwandlung, Nierenkontrolle und die Nebensysteme in der Flüssigkeitsaufnahme, die mit der Wasserregulierung zusammenhängen, unter Verwendung eines Digitalrechners simuliert. Für jedes Nebensystem wurden Koeffizienten und Zeitkonstanten in die veröffentlichten Unterlagen eingepasst und die Berechnungen folgten aufs Genaueste einem physiologischen Verständnis des in Frage kommenden Mechanismuses. Dadurch wurden experimentelle Unterlage über die Flüssigkeitsaufnahme- und Nierenreaktion nach Injektionen und fortlaufenden Infusionen mit hypertonischem Salz in Ratten gewonnen. Die Gesamtleistung des Musterbeispiels wurde durch Vergleich seiner Reaktion mit experimentell erzielten Reaktions-resultaten überprüft. Die Übereinstimmung dieses sowie auch anderer Befunde war zufriedenstellend, was darauf hindeutet, dass das Musterbeispiel die hauptsächlichen Varianten in der Regulierung der Körperflüssigkeit hinreichend berücksichtigt. Manipulation mit dem Musterbeispiel und Vergleich mit Ratten weist auf die Notwendigkeit eines kurzfristigen, oralen und gastrischen Feedbacks und einer Durstgrenze hin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADH:

total ADH

ADH c :

ADH concentration

ADH E :

effective ADH concentration

ALD:

total aldosterone

ALD c :

aldosterone concentration

C c :

cellular concentration of sodium in milli-equivalents per ml (m-equiv./ml)

C W :

cellular water (ml)

D C :

drinking fluid concentration of sodium (m-equiv./ml)

D I :

drinking inhibition factor (ml/100 g body wt)

D Na :

rate of drinking sodium (m-equiv./min)

D W :

rate of drinking water (ml/min)

τ C :

cellular error (ml/100 g body wt)

τ E :

extracellular error (ml/100 g body wt)

ECF:

extracellular fluid

E C :

extracellular concentration of sodium (m-equiv./ml)

E W :

extracellular water (ml)

GFRN :

glomerular filtration rate of sodium (m-equiv./min)

GFR W :

glomerular filtration rate of water (ml/min)

ICF:

intracellular fluid

I.C.:

initial conditions

INF:

infusion of sodium (m-equiv./min)

I C :

intestine concentration of sodium (m-equiv./ml)

I Na :

intestine sodium (m-equiv.)

I W :

intestine water (ml)

I-E ANa :

active flow of sodium from intestine to ECF (m-equiv./min)

I-E AW :

water carried by active sodium from intestine to ECF (ml/min)

I-E PNa :

passive flow of sodium between intestine and ECF (m-equiv./min)

I-E PW :

passive flow of water between intestine and ECF (ml/min)

K :

potassium (m-equiv.)

L :

insensible water loss (ml/min)

OS W :

osmotic flow of water between ECF and cells (ml/min)

S C :

stomach concentration of sodium (m-equiv./ml)

S H :

signal completely inhibiting stomach discharge (value 0 or 1)

S I :

stomach inhibition factor (ml/100 g body wt)

S Na :

stomach sodium (m-equiv.)

S W :

stomach water (ml)

S-E W :

flow of water between stomach and ECF (ml/min)

S-I Na :

flow of sodium from stomach to intestine (m-equiv./min)

S-I W :

flow of water from stomach to intestine (ml/min)

T :

total thirst signal (ml/100 g body wt)

T FNa :

tubular rejection factor of sodium

T FW :

tubular rejection factor of water

TRF Na :

tubular reabsorbtion factor of sodium

TRF W :

tubular reabsorbtion factor of water

U C :

urine concentration (m-equiv./ml)

U Na :

urine sodium (m-equiv./min)

U′ Na :

urine sodium for concentration check (m-equiv./min)

U W :

urine water (ml/min)

References

  • Adolph, E. F. (1943) In:Physiological Regulations. The Jacques Cattell Press.

  • Adolph, E. F. (1950) Thirst and its inhibition in the stomach.Am. J. Physiol. 161, 374–386.

    Google Scholar 

  • Bellows, R. T. (1939) Time factors in water drinking in dogs.Am. J. Physiol. 125, 87–97.

    Google Scholar 

  • Blass, E. M. (1968) Separation of cellular from extracellular controls of drinking in rats by frontal brain damage.Science 162, 1501–1503.

    Article  Google Scholar 

  • Brown, C. A. andMasoro, E. J. (1965) In:Physiology and Biophysics. Eds.T. C. Ruch andH. D. Patton, pp. 999–1002. W. B. Saunders, Philadelphia.

    Google Scholar 

  • Cole, D. F. (1955) The excretion of intravenously administered saline by the rat.Acta endocrin. 19, 397–405.

    Google Scholar 

  • Cole, D. F. (1957) The renal excretion of sodium and water by rats during infusion of hypo-iso-and hypertonic saline.Q. Jl exp. Physiol. 42, 15–23.

    Google Scholar 

  • Corbit, J. D. (1965) Effect of intravenous sodium chloride on drinking in the rat.J. comp. physiol. Psychol. 60, 397–406.

    Article  Google Scholar 

  • Corbit, J. D. (1969) Osmotic thirst: Theoretical and experimental analysis.J. comp. physiol. Psychol. 67, 3–14.

    Article  Google Scholar 

  • Curran, P. F. andSolomn, A. K. (1957) Ion and water fluxes in the ileum of rats.J. gen. Physiol. 41, 143–168.

    Article  Google Scholar 

  • Davis, J. O. (1964) Aldosterone and angiotensin.J. Am. med. Ass. 188, 1062–1068.

    Google Scholar 

  • Deland, E. C. andBradham, G. B. (1965) Fluid balance and electrolyte distribution in the human body.Memorandum RM-4347-PR. The Rand Corporation.

  • Dicker, S. E. andNunn, J. (1957) The role of antidiuretic hormone during water deprivation in rats.J. Physiol., Lond. 136, 235–248.

    Google Scholar 

  • Edelman, I. S. (1952) Water exchange between blood and tissues.Am. J. Physiol. 171, 279–296.

    Google Scholar 

  • Fincham, W. F. (1963) A study of the mechanism regulating the composition of the human blood by means of an electrical analogue computer. Ph.D. thesis, University of London.

  • Fitzsimons, J. T. (1961a) Drinking by nephrectomized rats injected with various substances.J. Physiol., Lond. 155, 563–579.

    Google Scholar 

  • Fitzsimons, J. T. (1961b) Drinking by rats depleted of body fluid without increase in osmotic pressure.J. Physiol., Lond. 159, 297–309.

    Google Scholar 

  • Fitzsimons, J. T. (1963) The effect of slow infusions of hypertonic solutions on drinking thresholds in rats.J. Physiol., Lond. 167, 344–354.

    Google Scholar 

  • Fitzsimons, J. T. andOatley, K. (1968) Additivity of stimuli for drinking in rats.J. comp. physiol. Psychol. 66, 450–455.

    Article  Google Scholar 

  • Flexner, L. B., Gellhorn, A. andMerrell, M. (1942) Studies on rates of exchange of substances between the blood and extravascular fluid.J. biol. Chem. 1, 35–40.

    Google Scholar 

  • Gilman, A. (1937) The relation between blood osmotic pressure, fluid distribution and voluntary water intake.Am. J. Physiol. 120, 323–328.

    Google Scholar 

  • Ginsburg, M. andHeller, H. (1953) The clearance of injected vasopressin from the circulation and its fate in the body.J. Endocrin. 9, 283–291.

    Google Scholar 

  • Hetherington, M. (1931) The state of water in mammalian tissues.J. Physiol., Lond. 73, 184–188.

    Google Scholar 

  • Hevesy, G. andJacobsen, C. F. (1940) Rate of passage of water through capillary and cell walls.Acta physiol. scand. 1, 11–18.

    Google Scholar 

  • Klisiecki, A., Pickford, M., Rothschild, P. andVerney, E. B. (1933) The absorption and excretion of water by the animal. Part I. The relation between absorption of water and its excretion by the innervated and denervated kidney.Proc. R. Soc. Lond. B,112, 496–521.

    Google Scholar 

  • Koshikawa, S. andSusuki, K. (1968) Study of osmoregulation as a feedback system.Med. biol. Engng 6, 149–158.

    Article  Google Scholar 

  • Landwehr, D. L., Klose, R. M. andGiebisch, G. (1967) Renal tubular sodium and water reabsorption in the isotonic sodium chloride loaded rat.Am. J. Physiol. 212, 793–798.

    Google Scholar 

  • Magee, D. F. (1965) In:Physiology and Biophysics, Eds.T. C. Ruch andH. D. Patton, p. 987. W. B. Saunders, Philadelphia.

    Google Scholar 

  • McFarland, D. J. (1965) Control theory applied to the control of drinking in the barbary dove.Anim. Behav. 13, 478–492.

    Article  Google Scholar 

  • McFarland, D. J. andMcFarland, F. J. (1968) Dynamic analysis of an avian drinking response.Med. biol. Engng 6, 659–667.

    Article  Google Scholar 

  • Meredith, J. F. (1957) An investigation of the mechanisms maintaining sodium and water balance in animals. Ph. D. thesis, University of Durham.

  • Miller, N. E., Sampliner, R. I. andWoodrow, P. (1957) Thirst reducing effects of water by stomach fistula vs. water by mouth measured by both consummatory and an instrumental response.J. comp. physiol. Psychol. 50, 1–5.

    Article  Google Scholar 

  • Mook, D. G. (1963) Oral and postingestional determinants of the intake of various solutions in rats with oesophageal fistulas.J. comp. physiol. Psychol. 56, 645–659.

    Article  Google Scholar 

  • Nagasaka, M., Shimizu, K., Maeda, T., Yoshitoshi, Y., Koshikawa, S. andSuzuki, K. (1966) Control of body fluid volume regarded as a feedback system.Med. biol. Engng 4, 567–574.

    Article  Google Scholar 

  • Oatley, K. (1965) Thirst and drinking mechanisms in the regulation of water intake in rats. Ph.D. thesis. University of London.

  • Oatley, K. (1967) A control model of the physiological basis of thirst.Med. biol. Engng 5, 225–237.

    Article  Google Scholar 

  • O'Kelly, L. I., Falk, J. L. andFlint, D. (1958) Water regulation in the rat—1. Gastrointestinal exchange rates of water and sodium chloride in thirsty animals,J. comp. physiol. Psychol. 51, 16–21.

    Article  Google Scholar 

  • O'Kelly, L. I. andBeck, R. C. (1960) Water regulation in the rat—III. The artificial control of thirst with stomach loads of water and sodium chloride.Psychol. Monogr. 74, (13) Whole No. 500, 1–26.

    Google Scholar 

  • Pace, W. H. (1961) An analogue computer model for the study of water and electrolyte flows in the extracellular and intracellular fluids.Instn Radio Engrs Trans. biomed. elect. 8, 29–33.

    Google Scholar 

  • Radford, E. P. (1959) Factors modifying water metabolism in rats fed dry diets.Am. J. Physiol. 196, 1098–1108.

    Google Scholar 

  • Reeve, E. B. andKulhanek, L. (1967) In:Physical Bases of Circulatory Transport: Regulation and Exchange. Eds.E. B. Reeve andA. C. Guyton, pp. 157–177. W. B. Saunders, Philadelphia.

    Google Scholar 

  • Rosnagle, R. S. andFarrell, G. L. (1956) Alterations in electrolyte intake and adrenal steroid secretion.Am. J. Physiol. 187, 7–10.

    Google Scholar 

  • Share, L. (1962) Vascular volume and blood level of antidiuretic hormone.Am. J. Physiol. 202, 791–794.

    Google Scholar 

  • Solarz, A. K. (1958) Effects of hydration on the running and drinking performance of thirsty rats.J. comp. physiol. Psychol. 51, 146–151.

    Article  Google Scholar 

  • Stellar, E. andHill, J. H. (1953) The rat's rate of drinking as a function of water deprivation.J. comp. physiol. Psychol. 45, 96–102.

    Article  Google Scholar 

  • Stellar, E., Hyman, R. andSamet, S. (1954) Gastric factors controlling water and salt solution drinking.J. comp. physiol. Psychol. 47, 220–226.

    Article  Google Scholar 

  • Stricker, E. M. (1968) Some physiological and motivational properties of the hypovolemic stimulus for thirst.Physiol. Behav.,3, 379–385.

    Article  Google Scholar 

  • Stricker, E. M. (1969) Osmoregulation and volume regulation in rats: inhibition of hypovolemic thirst by water.Am. J. Physiol. 217, 98–105.

    Google Scholar 

  • Verney, E. B. (1947) The anti-diuretic hormone and the factors which determine its release.Proc. R. Soc. Lond. B,135, 25–106.

    Article  Google Scholar 

  • Wolf, A. V. (1958) Osmometric analysis of thirst in man and dog.Am. J. Physiol. 161, 75–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Requests for reprints should be addressed to Dr. K. Oatley, Laboratory of Experimental Psychology, University of Sussex, Brighton, BN1 9QY. Copies of the simulation program in Elliott Algol are also available.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toates, F.M., Oatley, K. Computer simulation of thirst and water balance. Med. & biol. Engng. 8, 71–87 (1970). https://doi.org/10.1007/BF02551751

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551751

Keywords

Navigation