Skip to main content
Log in

Abstract

We outline a geometric theory for a class of homogeneous polynomial control systems called quadratic systems. We describe an algorithm to compute a minimal realization and study the feedback classification problem. Feedback invariants are related to the singularities of the input-output mapping and canonical forms are exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [B1] J. Baillieu, The geometry of homogeneous polynomial systems,Nonlinear Anal.,4 (1980), 879–900.

    Article  MathSciNet  Google Scholar 

  • [B2] J. Baillieul, Controllability and observability of polynomial systems,Nonlinear Anal.,4 (1981), 543–552.

    Article  MathSciNet  Google Scholar 

  • [B3] Z. Bartosiewicz, On polynomial continuous time systems, inTheory and Applications of Nonlinear Control Systems (C. Byrnes and A. Lindquist, eds.), pp. 293–299, North-Holland, Amsterdam, 1986.

    Google Scholar 

  • [B4] B. Bonnard, Contribution à l'étude des système, non linéaires, Thèse d'Etat, INPG-USMG, Grenoble, 1982.

    Google Scholar 

  • [B5] B. Bonnard, Contribution à l'étude du problème singulier, Preprint, LAG ENSIEG, Grenoble, 1987.

    Google Scholar 

  • [B6] B. Bonnard, Feedback equivalence for nonlinear systems and the time optimal control problem,SIAM J. Control Optim. (to appear).

  • [B7] N. Bourbaki,Groupes et Algèbres de Lie, Chapter 2, 3 Diffusion CCLS, Paris, 1971.

  • [BT] B. Bonnard and H. Tebbikh, Quadratic control systems,Proceedings of the 26th IEEE Conferences or Decision and Control, Los Angeles, CA, 1987, pp. 146–151.

  • [B8] R. W. Brockett, Feedback invariants for nonlinear systems,Proceedings of the IFAC World Congress, Helsinki, 1978, pp. 1115–1120.

  • [C] P. E. Crouch, Dynamical realization of finite Volterra series,SIAM J. Control Optim.,19 (1981), 177–202.

    Article  MathSciNet  Google Scholar 

  • [DC] J. Dieudonné and J. Carrell,Invariant Theory, Old and New, Academic Press, New York, 1971.

    MATH  Google Scholar 

  • [F] M. Fliess, Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives,Invent. Math.,71 (1983), 521–537.

    Article  MathSciNet  Google Scholar 

  • [G] G. B. Gurevitch,Foundations of the Theory of Algebraic Invariants, Noordhoff., Groningen, 1964.

    Google Scholar 

  • [H] M. Hazewinkel, Moduli and canonical forms for linear systems, II: the topological case,Math. Systems Theory,10 (1977), 363–385.

    Article  MathSciNet  Google Scholar 

  • [HK] R. Hermann and A. J. Krener, Nonlinear controllability and observability,IEEE Trans. Automat. Control,22 (1977), 728–740.

    Article  MathSciNet  Google Scholar 

  • [JR] B. Jakubczyck and W. Respondek, On linearization of control systems,Bull. Acad. Polon. Sci.,XXVIII (1980), 517–522.

    Google Scholar 

  • [JK] V. Jurdjevic, and I. Kupka, Polynomial control systems,Math. Ann.,272 (1985), 361–368.

    Article  MathSciNet  Google Scholar 

  • [M1] L. Markus, Quadratic differential equations and nonassociative algebras, inContributions to the Theory of Nonlinear Oscillations, Vol. V, pp. 185–213, Princeton University Press, Princeton, NJ, 1960.

    Google Scholar 

  • [M2] D. Mumford,Geometric Invariant Theory, Ergebnisse der Mathematik, Vol. 34, Springer-Verlag, Berlin, 1965.

    MATH  Google Scholar 

  • [S1] T. A. Springer,Invariant Theory, Lecture Notes in Mathematics, Vol. 585, Springer-Verlag, New York, 1977.

    MATH  Google Scholar 

  • [S2] H. J. Sussmann, Existence and uniqueness of minimal realizations of nonlinear systems,Math. Systems Theory,10 (1977), 263–284.

    Article  MathSciNet  Google Scholar 

  • [SJ] H. J. Sussmann, and V. Jurdjevic, Controllability of nonlinear systems,J. Differential Equations,12 (1972), 95–116.

    Article  MathSciNet  Google Scholar 

  • [T] A. Tannenbaum,Invariance and System Theory: Algebraic and Geometric Aspects, Lecture Notes in Mathematics, Vol. 845, Springer-Verlag, New York, 1981.

    MATH  Google Scholar 

  • [V] V. S. Varadarajan,Lie Groups, Lie Algebras and Their Representations, Prentice-Hall, Englewood Cliffs, NJ, 1974.

    MATH  Google Scholar 

  • [W] W. M. Wonham,Linear Multivariable Control: A Geometric Approach, 2nd edn., Springer-Verlag New York, 1979.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnard, B. Quadratic control systems. Math. Control Signal Systems 4, 139–160 (1991). https://doi.org/10.1007/BF02551263

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551263

Key words

Navigation