Skip to main content
Log in

An elementary approach to the polynomial τ-functions of the KP Hierarchy

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We give an elementary construction of the solutions of the KP hierarchy associated with polynomial τ-functions starting with a geometric approach to soliton equations based on the concept of a bi-Hamiltonian system. As a consequence, we establish a Wronskian formula for the polynomial τ-functions of the KP hierarchy. This formula, known in the literature, is obtained very directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Ablowitz and J. Satsuma,J. Math. Phys.,19, 2180–2186 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  2. H. Airault, H. P. McKean, and J. Moser,Commun. Pure Appl. Math.,30, 95–148 (1977).

    ADS  MathSciNet  Google Scholar 

  3. F. Calogero,Nuovo Cimento B,43, 177–241 (1978).

    ADS  MathSciNet  Google Scholar 

  4. D. V. Chudnovsky and G. V. Chudnovsky,Nuovo Cimento B,40, 339–353 (1977).

    MathSciNet  Google Scholar 

  5. I. M. Krichever,Funct. Anal. Appl.,12, 59–61, (1978).

    Article  Google Scholar 

  6. M. D. Kruskal, “The Korteweg-de Vries equation and related evolution equations,” in:Nonlinear Wave Motion (A. C. Newell, ed.) (Lect. Appl. Math., Vol. 15), Am. Math. Soc., Providence, RI (1974), pp. 61–83.

    Google Scholar 

  7. V. B. Matveev,Lett. Math. Phys.,3, 503–512 (1979).

    Article  MathSciNet  Google Scholar 

  8. T. Shiota,J. Math. Phys.,35, 5844–5849 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  9. G. Wilson,Invent. Math.,133, 1–41 (1998).

    Article  MathSciNet  Google Scholar 

  10. M. Sato and Y. Sato, “Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold,” in:Nonlinear PDEs in Applied Sciences (US-Japan Seminar, Tokyo) (P. Lax and H. Fujita, eds.), North-Holland, Amsterdam (1982), pp. 259–271.

    Google Scholar 

  11. Y. Ohta, J. Satsuma, D. Takahashi, and T. Tokihiro,Progr. Theor. Phys. Suppl.,94, 210–241 (1988).

    ADS  MathSciNet  Google Scholar 

  12. J. P. Zubelli,Lett. Math. Phys.,24, 41–48 (1992).

    Article  MathSciNet  Google Scholar 

  13. G. Wilson,J. Reine Angew. Math.,442, 177–204 (1993).

    MathSciNet  Google Scholar 

  14. J. Harnad and A. Kasman, eds.,The Bispectral Problem (Montreal, PQ, 1997), Am. Math. Soc., Providence, RI (1998).

    MATH  Google Scholar 

  15. G. Falqui, F. Magri, and M. Pedroni,Commun. Math. Phys.,197, 303–324 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  16. K. Takasaki,Rev. Math. Phys.,1, 1–46 (1989).

    Article  MathSciNet  Google Scholar 

  17. I. V. Cherednik,Funct. Anal. Appl.,12, 195–203 (1979).

    Article  Google Scholar 

  18. G. Wilson,Quart. J. Math. Oxford,32, 491–512 (1981).

    Article  Google Scholar 

  19. E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, “Transformation groups for soliton equations,” in:Proc. RIMS Symp. Nonlinear Integrable Systems: Classical Theory and Quantum Theory (M. Jimbo and T. Miwa, eds.), World Scientific, Singapore (1983), pp. 39–119.

    Google Scholar 

  20. L. A. Dickey,Soliton Equations and Hamiltonian Systems (Adv. Series in Math Phys, Vol. 12), World Scientific, Singapore (1991).

    MATH  Google Scholar 

  21. P. Casati, G. Falqui, F. Magri, and M. Pedroni,J. Math. Phys.,38, 4606–4628 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  22. M. F. de Groot, T. J. Hollowood, and J. L. Miramontes,Commun. Math. Phys.,145, 57–84 (1992).

    Article  ADS  Google Scholar 

  23. G. Falqui, F. Magri, and G. Tondo,Theor. Math. Phys. (forthcoming).

  24. K. Takasaki, “Integrable systems as deformations ofD-modules”, in:Theta Functions—Bowdoin 1987 (L. Ehrenpreis and R. C. Gunning, eds.) (Proc. Symp. Pure Math., Vol. 49, Part 1), Am. Math. Soc., Providence, RI (1989), pp. 143–168.

    Google Scholar 

  25. M. Mulase, “Algebraic theory of the KP equations,” in:Perspectives in Mathematical Physics (R. Penner and S.-T. Yau, eds.), International Press, Boston (1994), pp. 151–217.

    Google Scholar 

  26. F. Magri, M. Pedroni, and J. P. Zubelli,Commun. Math. Phys.,188, 305–325 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  27. W. T. Reid,Riccati Differential Equations, Acad. Press, New York (1972).

    MATH  Google Scholar 

  28. V. G. Kac,Infinite Dimensional Lie Algebras (3rd ed.), Cambridge Univ. Press, Cambridge (1990).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 122, No. 1, pp. 23–36, January, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falqui, G., Magri, F., Pedroni, M. et al. An elementary approach to the polynomial τ-functions of the KP Hierarchy. Theor Math Phys 122, 17–28 (2000). https://doi.org/10.1007/BF02551166

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02551166

Keywords

Navigation