Skip to main content
Log in

Species variation in the atherogenic profile of monkeys: Relationship between dietary fats, lipoproteins, and platelet aggregation

  • Published:
Lipids

Abstract

Because lipoproteins and platelet aggregation have been implicated in atherogenesis, relative differences in the response of these variables to dietary fat saturation were compared in three species of monkeys differing in their susceptibility to atherosclerosis (cebus, rhesus, and squirrel monkeys). Both long-term (8–12 years) and short-term (8 weeks) responses to diets containing 31% fat calories were examined in the same monkeys. As expected, long-term feeding of coconut oil by comparison to corn oil produced significantly higher plasma concentrations of total cholesterol, LDL cholesterol, apoB, and triglycerides, as well as higher ratios of LDL/HDL cholesterol and apo B/apo A-I. These responses were characteristic of all species with cebus being most responsive and rhesus the least. The shortterm plasma cholesterol response to animal fats (butter, lard, beef tallow) was significantly less than that to coconut oil. When fish oil was substituted for two-thirds of either corn oil or coconut oil, exceptional decreases occurred in plasma cholesterol and triglycerides, as well as in HDL cholesterol and apo A-I concentrations despite the fact that the fish oil diets contained more saturated fat and less polyenes than the corn oil diet. Platelet aggregation tended to increase with saturated fat consumption and greatly decreased with fish oil intake in all monkeys, although cebus monkeys were ten-fold more resistant to platelet aggregation than the other two species. The molecular species of platelet phosphatidylcholine (PC) varied with both the dietary fat fed and species of monkey. An inverse correlation (r=−0.60; p<0.001) was found between changes in one such PC molecular species (18∶0−20∶4) induced by diet and the platelet aggregation threshold. These results demonstrate that the lipemic and platelet responses to dietary saturated fat depend upon both the type of fat (i.e., the specific combination of dietary fatty acids, including the chain length of saturated fatty acids and the degree of polyunsaturation) and the species of monkey (genetic component) in which the response is elicited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance; apo, apolipoprotein

COCO+:

coconut oil and cholesterol

CORN+:

corn oil and cholesterol

EDTA:

ethylenediaminetetracetic acid

GLC:

gas-liquid chromatography

HDL:

high density lipoprotein

HDL-C:

high density lipoprotein-cholesterol

HPLC:

high performance liquid chromatography

LDL:

low density lipoprotein

LDL-C:

low density lipoprotein-cholesterol

LSD:

least significant difference

M/S:

monounsaturated/saturated fatty acid ratio

PC:

phosphatidylcholine

PPP:

platelet poor plasma

P/S:

polyunsaturated/saturated fatty acid ratio

PRP:

platelet-rich plasma

stdPRP:

standardized platelet rich plasma

VLDL-C:

very low density lipoprotein-cholesterol

THF:

tetrahydrofuran

References

  1. Hegsted, D.M., McGandy, R.B., Myers, M., and Stare, F.J. (1965)Am. J. Clin. Nutr. 17, 281–295.

    PubMed  CAS  Google Scholar 

  2. Keys, A., Anderson, J.T., and Grande, F. (1965)Metabolism 14, 776–787.

    Article  CAS  Google Scholar 

  3. Anderson, J.T., Grande, F., and Keys, A. (1976)Am. J. Clin. Nutr. 29, 1184–1189.

    PubMed  CAS  Google Scholar 

  4. Schonfeld, G., Patsch, W., Rudel, L.L., Nelson, C., Epstein, M., and Olson, R.E. (1982)J. Clin. Invest. 69, 1072–1080.

    PubMed  CAS  Google Scholar 

  5. Goodnight, S.H., Jr., Harris, W.S., Connor, W.E., and Illingworth, D.R. (1982)Arteriosclerosis 2, 87–113.

    PubMed  CAS  Google Scholar 

  6. Ross, R. (1986)N. Engl. J. Med. 314, 488–500.

    Article  PubMed  CAS  Google Scholar 

  7. Mattson, F.H., and Grundy, S.M. (1985)J. Lipid Res. 26, 194–202.

    PubMed  CAS  Google Scholar 

  8. Reiser, R., Probstfield, J.J., Silvers, A., Scott, L.W., Shortney, M.L., Wood, R.D., O'Brien, B.C., Gotto, A.M., and Insull, W., Jr., (1985)Am. J. Clin. Nutr. 42, 190–197.

    PubMed  CAS  Google Scholar 

  9. Shephard, J., Packard, C.J., Patsch, J.R., Gotto, A.M., Jr., and Taunton, O.D. (1978)J. Clin. Invest. 60, 1582–1592.

    Google Scholar 

  10. Vega, G.L., Groszek, E., Wolf, R., and Grundy, S.M. (1982)J. Lipid Res. 23, 811–822.

    PubMed  CAS  Google Scholar 

  11. Grundy, S.M., Florentin, L., Nix, D., and Whelan, M.F. (1988)Am. J. Clin. Nutr. 47, 965–969.

    PubMed  CAS  Google Scholar 

  12. Mensink, R.P., and Katan, M.B. (1989)N. Engl. J. Med. 321, 436–441.

    Article  PubMed  CAS  Google Scholar 

  13. Hayes, K.C. (1989)N. Engl. J. Med. 322, 402–404.

    Google Scholar 

  14. Rudel, L.L., Haines, J.L., and Sawyer, J.K. (1990)J. Lipid Res. 31, 1973–1882.

    Google Scholar 

  15. Grundy, S.M., and Vega, G.L. (1988)Am. J. Clin. Nutr. 47, 822–824.

    PubMed  CAS  Google Scholar 

  16. Corey, J.E., Hayes, K.C., Dorr, B., and Hegsted, D.M. (1974)Atherosclerosis 19, 119–134.

    Article  PubMed  CAS  Google Scholar 

  17. Nicolosi, R.J., Hojnacki, J.L., Llansa, N., and Hayes, K.C. (1977)Proc. Exp. Biol. Med. 156, 1–7.

    CAS  Google Scholar 

  18. Katan, M.B., Berns, M.A.M., Glatz, J.F.C., Knuiman, J.T., Nobels, A., and de Vries, J.H.M. (1988)J. Lipid Res. 29, 883–892.

    PubMed  CAS  Google Scholar 

  19. Ershow, A.G., Nicolosi, R.J., and Hayes, K.C. (1981)Am. J. Clin. Nutr. 34, 830–840.

    PubMed  CAS  Google Scholar 

  20. Rudel, L.L., Parks, J.S., and Caroll, R.M. (1983) inDietary Fats and Health (Perkins, E.G., and Visek, S.J., eds.)

  21. Hayes, K.C. (1979) inPrimates in Nutritional Research (Hayes, K.C., ed.) p. 181–198, Academic Press, New York.

    Google Scholar 

  22. Friedwald, W.T., Levy, R.I., and Fredrickson, D.S. (1972)Clin. Chem. 18, 499–502.

    Google Scholar 

  23. Slutzky, G.M., and Inbar, M. (1987)Am. Clin. Lab. 6, 18–23.

    Google Scholar 

  24. Hayes, K.C., Pronczuk, A., Addesa, A.E., and Stephan, Z.F. (1989)Am. J. Clin. Nutr. 49, 1211–1216.

    PubMed  CAS  Google Scholar 

  25. Patton, G.M., Fasulo, J.M., and Robins, S.J. (1990)J. Nutr. Biochem. 1, 549–556.

    Article  PubMed  CAS  Google Scholar 

  26. Lapage, G., and Roy, C.C. (1986)J. Lipid Res. 27, 114–120.

    Google Scholar 

  27. Snedecor, G.W., and Cochran, W.G. (1987)Statistical Methods, 7th edn., The Iowa Press, Ames.

    Google Scholar 

  28. Shephard, J., Packard, C.J., Grundy, S.M., Yeshurun, D., Gotto, A.M., Jr., and Taunton, O.D. (1980)J. Lipid Res. 21, 91–99.

    Google Scholar 

  29. Zanni, E.E., Stephan, Z.F., Zannis, V.I., Breslow, J.L., and Hayes, K.C. (1986)J. Nutr. 116, 1611–1619.

    PubMed  CAS  Google Scholar 

  30. Fisher, E.A., Blum, C.B., Zannis, V.I., and Breslow, J.L. (1983)J. Lipid Res. 24, 1039–1048.

    PubMed  CAS  Google Scholar 

  31. Sirtori, C.R., Tremoli, E., Gatti, E., Montanari, G., Sirtori, M., Colli, S., Gianfranceschi, G., Maderna, P., Dentone, C.Z., Testolin, G., and Galli, C. (1986)Am. J. Clin. Nutr. 44, 635–642.

    PubMed  CAS  Google Scholar 

  32. Hayes, K.C., Pronczuk, A., Lindsey, S., and Diersen-Schade, D. (1991)Am. J. Clin. Nutr. 53, 491–498.

    PubMed  CAS  Google Scholar 

  33. Nicolosi, R.J., and Hayes, K.C. (1980)Lipids 15, 549–554.

    Article  PubMed  CAS  Google Scholar 

  34. Johnson, F.L., St. Clair, W., and Rudel, L.L. (1985)J. Lipid Res. 26, 403–417.

    PubMed  CAS  Google Scholar 

  35. Bagdade, J.D., Hazzard, W.R., and Carlin, J. (1970)Metabolism 19, 1020–1028.

    Article  PubMed  CAS  Google Scholar 

  36. Lewis, J.C., Clair, R.W., and White, M.S. (1981)Exp. Mol. Pathol. 35, 394–404.

    Article  PubMed  CAS  Google Scholar 

  37. Nicolosi, R.J., and Hayes, K.C. (1983) inHandbook of Electrophoresis (Lewis, L.A., and Naito, H.K., eds.) Vol. 4, pp. 33–51, CRC Press, Boca Raton.

    Google Scholar 

  38. Hojnacki, J.L., Nicolosi, R.J., Hoover, G., Llansa, N., Lozy, M., and Hayes, K.C. (1977)Artery 3, 409–420.

    CAS  Google Scholar 

  39. Parks, J.S., Martin, J.A., Sonbert, B.L., and Bullock, B.C. (1987)Arteriosclerosis 7, 71–79.

    PubMed  CAS  Google Scholar 

  40. Herold, P.M., and Kinsella, J.E. (1986)Am. J. Clin. Nutr. 43, 566–598.

    PubMed  CAS  Google Scholar 

  41. Hartog, J.M., Lamers, J.M.J., Montfoort, A., Becker, A.E., Klompe, M., Morse, H., Cate, F.J., van der Werf, L., Hulsmann, W.C., Hugenholtz, P.G., and Verdouw, P.D. (1987)Am. J. Clin. Nutr. 46, 258–266.

    PubMed  CAS  Google Scholar 

  42. Phillipson, B.E., Rothrock, D.W., Connor, W.E., Harris, W.S., and Illingworth, D.R. (1985)N. Engl. J. Med. 312, 1210–1216.

    Article  PubMed  CAS  Google Scholar 

  43. Nestel, P.J., Connor, W.E., Reardon, M.F., Connor, S., Wong, S., and Boston, R. (1984)J. Clin. Invest. 74, 82–89.

    PubMed  CAS  Google Scholar 

  44. Harris, W.S. (1989)J. Lipid Res. 30, 585–807.

    Google Scholar 

  45. Nestel, P.J. (1986)Am. J. Clin. Nutr. 43, 752–757.

    PubMed  CAS  Google Scholar 

  46. Sullivan, D.R., Sanders, T.A.B., Trayner, I.M., and Thompson, G.R. (1986)Atherosclerosis 61, 129–134.

    Article  PubMed  CAS  Google Scholar 

  47. Huff, M.W., and Telford, D.E. (1989)Arteriosclerosis 9, 58–66.

    PubMed  CAS  Google Scholar 

  48. Roach, P., Kambouris, A.M., Trimble, R.P., Topping, D.L., and Nestel, P.J. (1987)FEBS Lett. 7, 159–162.

    Article  Google Scholar 

  49. Parks, J.S., and Bullock, B.C. (1987)J. Lipid Res. 28, 173–182.

    PubMed  CAS  Google Scholar 

  50. Wong, S.H., Nestel, P.J., Trimble, R.P., Storer, G.B., Illman, R.J., and Topping, D.L. (1984)Biochim. Biophys. Acta 792, 103–109.

    PubMed  CAS  Google Scholar 

  51. Urakaze, M., Hamazaki, T., Makuta, M., Ibuki, F., Kobayashi, S., Yano, S., and Kumagai, A. (1987)Am. J. Clin. Nutr. 46, 936–940.

    PubMed  CAS  Google Scholar 

  52. Mori, A.T., Codde, J.P., Vandongen, R., and Beilin, J. (1989)Lipids 22, 744–750.

    Article  Google Scholar 

  53. von Schacky, C., Fisher, S., and Wever, P.C. (1985)J. Clin. Invest. 76, 1626–1631.

    Article  Google Scholar 

  54. Knapp, H.R., Reilly, I.A.G., Alessandrini, P., and Fitzgerald, G.A. (1986)N. Engl. J. Med. 314, 937–942.

    Article  PubMed  CAS  Google Scholar 

  55. Vas Dias, F.W., Gibney, M.J., and Taylor, T.G. (1982)Atherosclerosis 43, 245–257.

    Article  PubMed  CAS  Google Scholar 

  56. Jakubovski, J.A., and Ardlie, N.G. (1978)Atherosclerosis 31, 335–344.

    Article  Google Scholar 

  57. Masi, I., Giani, E., Tremoli, E., and Sirtori, C.R. (1986)Ann. Nutr. Metab. 30, 66–72.

    Article  PubMed  CAS  Google Scholar 

  58. Renaud, S., Godsey, F., Dumont, E., Thevenon, C., Ortchanian, E., and Martin, J.L.O. (1986)Am. J. Clin. Nutr. 43, 136–150.

    PubMed  CAS  Google Scholar 

  59. Boberg, M., Vessby, B., and Selinus, I. (1986)Acta Med. Scand. 220, 153–160.

    Article  PubMed  CAS  Google Scholar 

  60. Solo, M.K. (1989)Ann. Med. 21, 39–46.

    Google Scholar 

  61. Lewis, J.C., and Taylor, R.G. (1989)Atherosclerosis 77, 167–174.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Pronczuk, A., Patton, G.M., Stephan, Z.F. et al. Species variation in the atherogenic profile of monkeys: Relationship between dietary fats, lipoproteins, and platelet aggregation. Lipids 26, 213–222 (1991). https://doi.org/10.1007/BF02543974

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02543974

Keywords

Navigation