Skip to main content
Log in

Upregulation of low density lipoprotein receptor activity by tumor necrosis factor, a process independent of tumor necrosis factor-induced lipid synthesis and secretion

  • Article
  • Published:
Lipids

Abstract

It has been shown that tumor necrosis factor (TNF) rapidly upregulates expression of the low density lipoprotein (LDL) receptors on Hep G2 cells and acutely stimulates hepatic lipid synthesis and secretionin vivo. It may thus be possible that TNF-induced expression of LDL receptors is secondary to a decrease in cellular cholesterol content caused by TNF-stimulated lipid secretion. In order to know whether TNF upregulates LDL receptors by depletion of the cellular cholesterol content, the present experiments were designed to study the temporal relationship between TNF-stimulated expression of LDL receptor activity and TNF-induced changes in lipid synthesis and secretion in anin vitro setting by using Hep G2 cells (a highly differentiated human hepatoma cell line) as a hepatocyte model. Hep G2 cells were incubated with TNF (usually 2.5 nmol/L) for certain periods, and LDL receptor activity was evaluated by measuring [125I]LDL binding at 4°C; lipid synthesis and secretion were assayed by measuring [3H]glycerol incorporation into triglycerides and phospholipids as well as [14C]acetate incorporation into cholesterol. We found that a 30-h exposure of the cells to TNF was needed for the effect of TNF to be seen on lipid synthesis and secretion as measured by incorporation of [3H]glycerol into triglycerides and phospholipids, whereas TNF rapidly (in several hours) upregulated LDL receptor activity. TNF stimulated triglyceride synthesis, but did not stimulate phospholipid synthesis. On the other hand, TNF stimulated phospholipid secretion, but did not stimulate triglyceride secretion. Exposure of the cells to TNF for 16 or 24 h neither decreased cholesterol synthesis nor stimulated cholesterol secretion as measured by [14C]acetate incorporation into cholesterol. Upregulation of LDL receptor activity through inhibition of cellular cholesterol synthesis with compactin (a competitive inhibitor of the 3-hydroxyl-3-methylglutaryl-CoA reductase) was augmented by TNF, whereas downregulation of LDL receptor activity through stimulation of cellular cholesterol synthesis with mevalonolactone almost completely blocked the upregulatory effect of TNF. In conclusion, TNF-stimulated expression of LDL receptor activity is not secondary to a depletion of cellular cholesterol content through TNF-stimulated lipid secretion or inhibition of cholesterol synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

apo:

Apolipoprotein

BSA:

bovine serum albumin

EDTA:

ethylenediaminetetraacetic acid

HSA:

human serum albumin

IL:

interleukin

LDL:

low density lipoproteins

PBS:

phosphate-buffered saline

TLC:

thin-layer chromatography

TNF:

tumor necrosis factor

VLDL:

very low density lipoproteins

References

  1. Beutler, B., and Cerami, A. (1988)Annu. Rev. Biochem. 57, 505–518.

    Article  PubMed  CAS  Google Scholar 

  2. Cammusi, G., Albano, E., Tetta, C., and Bussolino, F. (1991)Eur. J. Biochem. 202, 3–14.

    Article  Google Scholar 

  3. Cerami, A. (1992)Clin. Immunol. Immunopathol. 63, S3-S10.

    Article  Google Scholar 

  4. Spooner, C.E., Markowitz, N.P., and Saravolatz, L.D. (1992)Clin. Immunol. Immunopathol. 63, S11-S17.

    Article  Google Scholar 

  5. Dinarello, C.A. (1991)J. Infect. Dis. 163, 1177–1184.

    PubMed  CAS  Google Scholar 

  6. Grunfeld, C., and Palladino, Jr., M.A. (1990)Adv. Intern. Med. 35, 45–72.

    PubMed  CAS  Google Scholar 

  7. Feingold, K.R., and Grunfeld, C. (1987)J. Clin. Invest. 80, 184–190.

    PubMed  CAS  Google Scholar 

  8. Krauss, R.M., Grunfeld, C., Doerrler, W.T., and Feingold, K.R. (1990)Endocrinology 50, 1016–1021.

    Google Scholar 

  9. Feingold, K.R., Soued, M., Serio, M.K., Moser, A.H., Dinarello, C.A., and Grunfeld, C. (1989)Endocrinology 125, 267–274.

    Article  PubMed  CAS  Google Scholar 

  10. Feingold, K.R., Soued, M., Adi, S., Staprans, I., Neese, R., Shigenaga, J., Doerrler, W., Moser, A.H., Dinarello, C.A., and Grunfeld, C. (1991)Arterioscler. Thromb. 11, 495–500.

    PubMed  CAS  Google Scholar 

  11. Liao, W., and Florén, C.H. (1993)Scand. J. Gastroenterol. 28, 97–103.

    PubMed  CAS  Google Scholar 

  12. Grunfeld, C., and Feingold, K.R. (1991)Trends Endocrinol. Metab. 2, 213–219.

    Article  CAS  PubMed  Google Scholar 

  13. Grunfeld, C., Dinarello, C.A., and Feingold, K.R. (1991)Metabolism 40, 894–898.

    Article  PubMed  CAS  Google Scholar 

  14. Liao, W., and Florén, C.H. (1993)Hepatology 17, 898–907.

    Article  PubMed  CAS  Google Scholar 

  15. Stopeck, A.T., Nicholson, A.C., Mancini, F.P., and Hajjar, D.P. (1993)J. Biol. Chem. 268, 17489–17494.

    PubMed  CAS  Google Scholar 

  16. Liao, W., and Florén, C.H. (1992)Hepatology 16, 224–231.

    Article  PubMed  CAS  Google Scholar 

  17. Liao, W., and Florén, C.H. (1992)Scand. J. Clin. Lab. Invest. 52, 183–188.

    PubMed  CAS  Google Scholar 

  18. Havel, R.J., Eder, H.A., and Bragdon, J.H. (1955)J. Clin. Invest. 34, 1345–1353.

    Article  PubMed  CAS  Google Scholar 

  19. McFarlane, A.S. (1958)Nature 182, 53.

    Article  PubMed  CAS  Google Scholar 

  20. Bilheimer, D.W., Eisenberg, S., and Levy, R.I. (1972)Biochim. Biophys. Acta 269, 212–221.

    Google Scholar 

  21. Bligh, E.G., and Dyer, W.J. (1959)Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  22. Liao, W., and Florén, C.H. (1992)Arterioscler. Thromb. 12, 503–511.

    PubMed  CAS  Google Scholar 

  23. Kawakami, M., Pekala, P.H., Lane, M.D., and Cerami, A. (1982)Proc. Natl. Acad. Sci. USA 79, 912–916.

    Article  PubMed  CAS  Google Scholar 

  24. Beutler, B.A., Milsark, I.W., and Cerami, A. (1985)J. Immunol. 135, 3972–3977.

    PubMed  CAS  Google Scholar 

  25. Wang, S.R., Pessah, M., Infante, J., Catala, D., Salvat, C., and Infante, R. (1988)Biochim. Biophys. Acta 961, 351–363.

    PubMed  CAS  Google Scholar 

  26. Coleman, R.A., Haynes, E.B., Sand, T.M., and Davis, R.A. (1988)J. Lipid Res. 29, 33–42.

    PubMed  CAS  Google Scholar 

  27. Ellsworth, J.L., Erickson, S.K., and Cooper, A.D. (1986)J. Lipid Res. 27, 858–874.

    PubMed  CAS  Google Scholar 

  28. Javitt, N.B. (1990)FASEB J. 4, 161–168.

    PubMed  CAS  Google Scholar 

  29. Ettinger, W.H., Varma, V.K., Sorci-Thomas, M., Parks, J.S., Sigmon, R.C., Smith, T.K., and Verdery, R.B. (1994)Arterioscler, Thromb. 14, 8–13.

    CAS  Google Scholar 

  30. Delers, F., Mangeney, M., Raffa, D., Vallet-Colom, I., Paveau, M., Tran-quang, N., Davrinches, C., and Chambaz, J. (1989)Biochem. Biophys. Res. Commun. 161, 81–88.

    Article  PubMed  CAS  Google Scholar 

  31. Hirsch, R.L., McKay, D.G., Travers, R.I., and Skraly, R.K. (1964)J. Lipid Res. 5, 563–568.

    PubMed  CAS  Google Scholar 

  32. Warren, R.S., Donner, D.B., Starnes, Jr., H.F., and Brennan, M.F. (1987)Proc. Natl. Acad. Sci. USA 84, 8619–8622.

    Article  PubMed  CAS  Google Scholar 

  33. Warren, R.S., Starnes, Jr., H.F., Alcock, N., Calvano, S., and Brennan, M.F. (1988)Am. J. Physiol. 255, E206-E212.

    PubMed  CAS  Google Scholar 

  34. Brown, M.S., and Goldstein, J.L. (1986)Science 232, 34–37.

    Article  PubMed  CAS  Google Scholar 

  35. Goldstein, J.L., and Brown, M.S. (1985)J. Cell Sci. Suppl. 3, 131–137.

    Google Scholar 

  36. Hamanaka, R., Kohno, K., Seguchi, T., Okamura, K., Morimoto, A., Ono, M., and Kuwano, M. (1992)J. Biol. Chem. 267, 13160–13165.

    PubMed  CAS  Google Scholar 

  37. Grove, R.I., Mazzucco, C., Allegretto, N., Kiener, P.A., Spitalny, G., Radka, S.F., Shoyab, M., Antonaccio, M., and Warr, G.A. (1991)J. Lipid Res. 32, 1889–1897.

    PubMed  CAS  Google Scholar 

  38. Grove, R.I., Mazzucco, C., Radka, S.F., Shoyab, M., and Kiener, P.A. (1991)J. Biol. Chem. 266, 18194–18199.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Liao, W., Florén, CH. Upregulation of low density lipoprotein receptor activity by tumor necrosis factor, a process independent of tumor necrosis factor-induced lipid synthesis and secretion. Lipids 29, 679–684 (1994). https://doi.org/10.1007/BF02538911

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02538911

Keywords

Navigation