Skip to main content
Log in

The seasonal productivity cycle of phytoplankton and controlling factors in Lake Constance

  • Published:
Swiss journal of hydrology Aims and scope Submit manuscript

Abstract

Annual phytoplankton productivity in Lake Constance is about 300 g C m−2, a value typical for mesoeutrophic lakes. Seasonal variations in phytoplankton biomass and productivity are exceptionally great because of a sequence of factors controlling the production process. During winter productivity is controlled by low energy inputs and high respiratory losses due to deep water column mixing. Biomass is low and water transparancy high. The spring phytoplankton growth is triggered by the thermal stabilization of the water column. The summer phytoplankton biomass maximum mainly depends on phosphorus availability. However, biomass yields comprise only 15–20% of values to be expected from the Redfield ratio because large proportions of POM are detritus and non-algal biota. Moreover, sedimentation during the second half of the year removes biomass from the euphotic zone. Water transparency and thus vertical distribution of algal photosynthesis is highly dependent on phytoplankton biomass. Self-shading causes considerably smaller seasonal variations in areal biomass and photosynthetic rates than in volume-based values. By light-shade adaptation effects of seasonal fluctuations in mean daily surface radiance fluxes on algal photosynthesis can to a significant extent be compensated for. At any given level of biomass daylength is the major determinant of daily production rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Le Cren, E. D., and Lowe-McConnell, R. H. (eds.) The Functioning of Freshwater Ecosystems. International Biological Programme. Cambridge Univ. Press 1980.

  2. Developments of Hydrobiology. A monograph Series. W. Junk.

  3. Monographiae Biologicae. Elsevier.

  4. Richerson, P.J., Armstrong, R., and Goldman, C.R.: Contemporaneous disequilibrium, a new hypothesis to explain the paradox of the plankton. Proc. Nat. Acad. Sci67 (4), 1710–1714 (1970).

    Article  CAS  PubMed  Google Scholar 

  5. Kilham, P., in preparation.

  6. Tilman, D.: Resource competition between planktonic algae: An experimental and theoretical approach. Ecology58, 338–348 (1977).

    Article  CAS  Google Scholar 

  7. Reynolds, C.S.: Phytoplankton periodicity: The interactions of form, function and environmental variability. Freshwat. Biol.14, 11–142 (1984).

    Google Scholar 

  8. Sommer, U.: Seasonal succession of phytoplankton in Lake Constance. Bio Science85, 351–357 (1985).

    Google Scholar 

  9. Lewis, W. M. Jr: Zooplankton community analysis. Studies on a tropical system. Springer Verlag 1979.

  10. Talling, J. F.: The phytoplankton population as a compound photosynthetic system. New Phytol.56, 133–149 (1957).

    Article  Google Scholar 

  11. Vollenweider, R. A.: Calculation models of photosynthesis-depth curves and some implications regarding day rate estimates in primary production measurements. Mem. Ist. Ital. Idrobiol./Suppl.18, 425–457 (1965).

    Google Scholar 

  12. Fee, E. J.: A numerical model for the estimation of photosynthetic production, integrated over time and depth, in natural waters. Limnol. Oceanogr.14, 906–911 (1969).

    Google Scholar 

  13. Fee, E. J.: A numerical model for determining intergral primary production and its application to Lake Michigan. J. Fish. Res. Bd. Can.30, 1447–1468 (1973).

    Google Scholar 

  14. Megard, R. O., Tonkyn, D. W., and Senft, W. H.: Kinetics of oxygenic photosynthesis in planktonic algae. J. Plankton Res.6, 325–337 (1984).

    CAS  Google Scholar 

  15. Sommer, U.: The role of r- and k-selection in the succession of phytoplankton in Lake Constance. Acta Oecologia/Oecol. Gener.1981 (2), 327–342 (1981).

    Google Scholar 

  16. Sommer, U.: Nutrient competition between phytoplankton species in multispecies chemostat experiments. Arch. Hydrobiol.96, 399–416 (1983).

    Google Scholar 

  17. Sommer, U.: Sedimentation of principal phytoplankton species in Lake Constance. J. Plankton Res.6, 1–15 (1984).

    Google Scholar 

  18. Sommer, U.: Population dynamics of three planktonic diatoms in Lake Constance. Holarct. Ecol.7, 257–261 (1984).

    Google Scholar 

  19. Sommer, U.: Light, stratification and zooplankton as controlling factors for the spring development of phytoplankton in Lake Constance. Schweiz. Z. Hydrol.45, 394–404 (1984).

    Google Scholar 

  20. Tilzer, M.M.: The importance of fractional light absorption by photosynthetic pigments for phytoplankton productivity in lake Constance. Limnol. Oceanogr.28, 833–846 (1983).

    CAS  Google Scholar 

  21. Tilzer, M.M.: The quantum yield as a fundamental parameter controlling vertical photosynthetic profiles of photoplankton in Lake Constance. Arch. Hydrobiol./Suppl.69, 169–198 (1984).

    Google Scholar 

  22. Tilzer, M. M.: Estimation of phytoplankton loss rates from daily photosynthetic rates and observed biomass changes in Lake Constance. J. Plankton Res.6, 309–324 (1984).

    Google Scholar 

  23. Geller, W.: Production, food utilization and losses of two coexisting ecologically differentDaphnia species. Arch-Hydrobiol. Beih. Ergebn. Limnol.21, 67–79 (1985).

    Google Scholar 

  24. Simon, M., Tilzer, M.M.: Bacterial responses to seasonal changes in primary production and phytoplankton biomass in Lake Constance. J. Plankton Res.9, 535–552 (1987).

    Google Scholar 

  25. Stemann-Nielsen, E.: The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. Int. Explor. Mer.18, 117–140 (1952).

    Google Scholar 

  26. Sakamoto, M., Tilzer, M.M., Gächter, R., Rai, H., Collos, Y., Tschumi, P., Berner, P., Zbären, D., Dokulil, M., Bossard, P., Uehlinger, U., and Nusch, E.A.: Joint field experiment for comparisons of measuring methods of photosynthetic production. J. Plankton Res.6, 365–383 (1984).

    CAS  Google Scholar 

  27. Tilzer, M.M.: Secchi dish-chlorophyll relationships in a lake with highly variable phytoplankton biomass. Hydrobiologia (in press).

  28. Sauberer, F.: Empfehlungen für die Durchführung von Strahlungsmessungen an und in Gewässern. Mitt. int. Ver. Limnol.11, 1–77 (1962).

    Google Scholar 

  29. Lorenzen, C. J.: Determination of chlorophyll and phaeopigments: Spectrophotometric equations. Limnol. Oceanogr.12, 343–346 (1967).

    CAS  Google Scholar 

  30. Moed, J. R., and Hallegraeff, G. M.: Some problems in the estimation of chlorophylla and phaeopigments from pre- and post-actdification spectrophotometric measurements. Int. Rev. ges. Hydrobiol.63, 787–800 (1978).

    CAS  Google Scholar 

  31. Nusch, E. A.: Comparison of different methods for chlorophyll and phaeopigment determination. Arch-Hydrobiol./Beih. Ergebn. Limnol.14, 14–36 (1980).

    CAS  Google Scholar 

  32. Kiefer, F.: Naturkunde des Bodensees. 2nd Ed. Jan Thorbecke Verlag 1972.

  33. Wagner, G.: Simulationsmodelle der Seeneutrophierung, dargestellt am Beispiel des Bodensee-Obersees. Teil II: Simulation des Phosphorhaushaltes des Bodensee-Obersees. Arch-Hydrobiol.78, 1–41 (1976).

    CAS  Google Scholar 

  34. Elster, H.J.: Der Bodensee. Bedrohung und Sanierungsmöglichkeiten eines Ökosystems. Naturwiss.64, 207–215 (1977).

    Article  CAS  Google Scholar 

  35. Elster, H.J.: Neuere Untersuchungen über die Eutrophierung und Sanierung des Bodensees. gwf, wasser-abwasser123, 277–287 (1982).

    CAS  Google Scholar 

  36. Stabel, H. H.: Impact of sedimentation on the phosphorus content of the euphotic zone of Lake Constance. Ver. int. Ver. Limnol.22, 964–969 (1984).

    CAS  Google Scholar 

  37. Lampert, W., and Schober, U.: Das regelmäßige Auftreten von Frühjahrs-Algenmaximum und «Klarwasserstadium» im Bodensee als Folge von klimatischen Bedingungen und Wechselbeziehungen zwischen Phyto- und Zooplankton. Arch. Hydrobiol.82, 364–386 (1978).

    Google Scholar 

  38. Schober, U.: Kausalanalytische Untersuchungen der Abundanzschwankungen des Chrustaceenplanktons im Bodensee. Ph. D. Thesis, 162 pp. Univ. of Freiburg i. Br. 1980.

  39. Steinhauser, F.: Die Zunahme der Intensität der direkten Sonnenstrahlung mit der Höhe und die Verteilung der “Trübung” in den unteren Luftschichten. Met. Z.56, 172–181 (1939).

    Google Scholar 

  40. Hutchinson, G. E.: A Treatise on Limnology. I. Geography, Physics, and Chemistry, John Wiley 1957.

  41. Talling, J. F.: The underwater light climate as a controlling factor in the production ecology of freshwater phytoplankton. Mitt. int. Ver. Limnol.19, 214–243 (1971).

    Google Scholar 

  42. Dubinsky, Z., and Berman, T.: Seasonal changes in the spectral composition of downwelling irradiance of Lake Kinneret (Israel). Limnol. Oceanogr.24, 652–663 (1979).

    CAS  Google Scholar 

  43. Jewson, D.H., Talling, J. F., Dring, M. J., Tilzer, M. M., Heaney, S. I., and Cunningham, C.: Measurements of photosynthetically available radiation in freshwater: Comparative tests of some current instruments used in studies of primary production. J. Plankton Res.6, 259–273 (1984).

    Google Scholar 

  44. Schanz, F.: Vertical light attenuation and phytoplankton development in Lake Zurich, Limnol. Oceanogr.30, 299–310 (1985).

    CAS  Google Scholar 

  45. Bindloss, M. E.: The light climate of Loch Leven, a shallow Scottish lake, in relation to primary production of phytoplankton. Freshwat. Biol.6, 501–518 (1976).

    Article  Google Scholar 

  46. Jewson, D. H.: Light penetration in relation to phytoplankton content of the euphotic zone of Lough Neagh, N. Ireland. Oikos28, 73–83 (1977).

    Article  Google Scholar 

  47. Berman, T.: Light penetrance in Lake Kinneret. Hydrobiologia49, 41–48 (1976).

    Google Scholar 

  48. Tilzer, M. M.: Predictions of productivity changes in Lake Tahoe at increasing phytoplankton biomass. Verh. int. Ver. Limnol.20, 407–413 (1979).

    Google Scholar 

  49. Megard, R. O., Combs, W. S. Jr., Smith, P. D., Knoll, A. S.: Attenuation of light and daily integral rates of photosynthesis attained by planktonic algae. Limnol. Oceanogr.24, 1038–1050 (1979).

    Google Scholar 

  50. Smith, R. C., and Baker, K. S.: The bio-optical state of ocean waters and romote sensing. Limnol. Oceanogr.23, 247–259 (1978).

    Google Scholar 

  51. Atlas, D., and Bannister, T. T.: Dependence of mean spectral extinction coefficient of phytoplankton on depth, water color, and species. Limnol. Oceanogr.25, 157–159 (1980).

    CAS  Google Scholar 

  52. Kirk, J. T. O.: Light and Photosynthesis in Aquatic Ecosystems. Cambridge Univ. Press. 1983.

  53. Pechlaner, R.: The phytoplankton spring outburst and its conditions in Lake Erken (Sweden). Limnol. Oceanogr.15, 113–130 (1970).

    Google Scholar 

  54. Fuhs, G. W., Demmerle, S. D., Canelli, E., and Chen, M.: Characterization of phosphorus-limited plankton algae (with reflections on the limiting nutrient concept). In: Likens, G. E. (ed.): Nutrients and Eutrophication: The Limiting Nutrient Controversy. Spec. Symp. Amer. Soc. Limnol. Oceanogr.1, 113–133 (1972).

  55. Droop, M. R.: The nutrient status of algal cells in continuous culture. J. Mar. Biol. Ass. U. K.55, 541–555 (1974).

    Google Scholar 

  56. Rhee, G. Y.: Effect of N:P atomic ratios and nitrate limitation on algal growth, cell composition and nitrate uptake. Limnol. Oceanogr.23, 10–25 (1978).

    CAS  Google Scholar 

  57. Rhee, G. Y.: Continuous culture in phytoplankton ecology. In: Droop, M. R., and Jannasch H. W. (eds.): Advances in Aquatic Microbiology, vol. 2. Academic Press 1980.

  58. Redfield, A. C.: The biological control of chemical factors in the environment. Amer. Scient.4b, 205–221 (1958).

    Google Scholar 

  59. Stabel, H. H.: The role of plankton biomass in controlling fluctuations of suspended matter in Lake Constance. Hydrobiologia140, 173–181 (1986).

    CAS  Google Scholar 

  60. Sommer, U., and Stabel, H. H.: Silicon consumption and population density changes of dominant planktonic diatoms in Lake Constance. J. Ecol.73, 119–130 (1983).

    Google Scholar 

  61. Stabel, H. H., and Geiger, M.: Phosphorus adsorption to riverine suspended matter: Implications for the P-budget of Lake Constance. Water Res.19, 1347–1352 (1985).

    Article  CAS  Google Scholar 

  62. Bannister, T. T.: Production equations in terms of chlorophyll concentration quantum yield, and upper limit to production. Limnol. Oceanogr.19, 1–12 (1974).

    Google Scholar 

  63. Robarts, R. D., and Zohary, T.:Microcystis aeruginosa and underwater light attenuation in a hypereutrophic lake (Hartbeespoort Dam, South Africa). J. Ecol.72, 1001–1017 (1984).

    Article  Google Scholar 

  64. Robarts, R. D.: Hypertrophy, a consequence of development. Intern. J. Environmental Studies25, 167–175 (1985).

    Google Scholar 

  65. Revsbech, N. P., Jorgensen, B. B., Blackburn, I. H., and Cohen, Y.: Microelectrode studies of the photosynthesis and O2, the H2S and pH profiles of a microbial mat. Limnol. Oceanogr.28, 1062–1074. (1983).

    Google Scholar 

  66. Jassby, A. D., Platt, T.: Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr.21, 540–547 (1976).

    CAS  Google Scholar 

  67. Stemann-Nielsen, E., and Jorgensen, E. G.: The adaptation of plankton algae. I. General part. Physiol. Plant21, 401–413 (1968).

    Article  Google Scholar 

  68. Falkowski, P. G.: Light-shade adaptation and assimilation numbers. J. Plankton Res.3, 203–216 (1981).

    CAS  Google Scholar 

  69. Prézelin, B. B.: Light reactions in photosynthesis. In Platt, T. (ed.): Physiological Bases of Phytoplankton Ecology, pp. 1–46 1981.

  70. Perry, M. J., Talbot, M. C., and Alberte, R. S.: Photoadaptation in marine phytoplankton: response of the photosynthetic unit. Mar. Biol.62, 91–101 (1981).

    Article  CAS  Google Scholar 

  71. Richardson, K., Beardall, J., and Raven, J.A.: Adaptation of unicellular algae to irradiance. An analysis of strategies. New Phytol.93, 157–191 (1983).

    Article  Google Scholar 

  72. Findenegg, I.: Produktionsbiologische Untersuchungen an Ostalpenseen. Int. Rev. ges. Hydrobiol.49, 381–416 (1964).

    Google Scholar 

  73. Jewson, P. H.: The interaction of components controlling net phytoplankton photosynthesis in a well-mixed lake (Lough Neagh, Northern Ireland). Freshwater. Biol.6, 551–576 (1976).

    Article  Google Scholar 

  74. Senft, H. W.: Dependence of light-saturated rates of algal photosynthesis on intracellular concentrations of phosphorus. Limnol. Oceanogr.23, 709–718 (1978).

    CAS  Google Scholar 

  75. Tilzer, M. M.: Distinction between light-mediated and light-independent variations of photosynthesis in Lake Constance. Hydrobiologia (in press).

  76. Tilzer, M. M., and Goldman, C. R.: Importance of mixing, thermal stratification and light adaptation for phytoplankton productivity in Lake Tahoe (California-Nevada). Ecology59, 810–821 (1978).

    Article  Google Scholar 

  77. Faklowski, P. G.: Light-shade adaptation in marine phytoplankton. In: Falkowski, P. G. (ed.): Primary Productivity in the Sea, pp. 99–120, 1980.

  78. Rodhe, W.: Standard correlations between pelagic photosynthesis and light. Mem. ist. Ital. Idobiol. Suppl.18, 365–381 (1965).

    Google Scholar 

  79. Rodhe, W.: Crystallization of eutrophication concepts in Northern Europe. In: Eutrophication: Causes, Consequences, Correctives, pp. 50–64, Nat'l. Acad. Sci., Washington D. C., 1969.

    Google Scholar 

  80. Oglesby, R. T.: Relationship of fish yield to lake phytoplankton standing crop, production and morphoedaphic factors. J. Fish. Res. Bd. Can.34, 2271–2279 (1977).

    Google Scholar 

  81. Hecky, R. E., and Fee, E. J.: Primary production and rates of algal growth in lake Tanganyika. Limnol. Oceanogr.26, 532–547 (1981).

    Google Scholar 

  82. Hecky, R. E.: African lakes and their trophic efficiencies: A temporal perspective. In: Meyers, D. G., and Strickler, J. R. (eds.): Trophic Interactions within Aquatic Ecosystems. AAAS Selected Symp.85, 405–448 (1984).

  83. Wetzel, R. G.: Limnology, 2nd Ed. Samders 1983.

  84. Vollenweider, R. A., and Nauwerck, A.: Some observations on the C-14 method for measuring primary production. Ver. int. Ver. Limnol.14, 134–149 (1961).

    Google Scholar 

  85. Tilzer, M. M., Hillbricht Ilkowska, A., Kowalczewski, A., Spodniewska, I., and Turczynska, J.: Diel phytoplankton periodicity in Mikolajskie Lake, Poland, as measured by different methods in parallel. Int. Rev. Ges. Hydrobiol.62, 279–289 (1977).

    Google Scholar 

  86. Tilzer, M. M., and Horne, A. J.: Diel patterns of phytoplankton productivity and extracellular release in ultra-oligotrophic Lake Tahoe. Int. Rev. ges. Hydrobiol.64, 157–176 (1979).

    Google Scholar 

  87. Rodhe, W., Vollenweider, R. A., and Nauwerck, A.: The primary production and standing crop of phytoplankton. In: Buzzati-Traverso, A. A. (ed.): Perspectives in Marine Biology, pp. 299–322. Univ. of California Press 1958.

  88. Jewson, D. H., and Wood, R. B.: Some effects on integral photosynthesis of artificial circulation of phytoplankton through light gradients. Verh. Int. Verein Limnol.19, 1037–1044 (1975).

    Google Scholar 

  89. Peterson, B. J.: Radiocarbon uptake: Its relation to net particulate production. Limnol. Oceanogr.23, 179–184 (1978).

    CAS  Google Scholar 

  90. Forsberg, B. R.: The fate of planktonic primary production. Limnol. Oceanogr.30, 807–819 (1985).

    CAS  Google Scholar 

  91. Reynolds, C. S., Harris, G. P., and Gouldney, D. N.: Comparisons of carbon-specific growth rates of cellular increase of phytoplankton in large limnetic enclosures. J. Plankton Res.7, 791–820 (1985).

    Google Scholar 

  92. Elbrächter, M.: Population dynamics ofCeratium in coastal waters of the Kiel Bay. Oikos. Suppl15, 43–48 (1973).

    Google Scholar 

  93. Pollingher, U., and Serruya, C.: Phased division ofPeridinium cinctum f.westii (Dinophyceae) and development of the Lake Kinneret (Israel) bloom. J. Phycol.12, 162–170 (1976).

    Article  Google Scholar 

  94. Heller, M. D.: The phased division of the freshwater dinoflagellateCeratium hirundinella and its use as a method of assessing growth in natural populations. Freshwat. Biol.7, 527–533 (1977).

    Article  Google Scholar 

  95. Sommer, U., Wedemeyer, C., and Lowski, B.: Comparison of potential growth rates ofCeratium hirundinella with observed population density changes. Hydrobiologia19, 159–164 (1984).

    Article  Google Scholar 

  96. Riley, G. A.: Phytoplankton in the North Central Sargasso Sea, 1950–52. Limnol. Oceanogr.2, 252–270 (1957).

    Google Scholar 

  97. Ramberg, L.: Relations between phytoplankton and light climate in two Swedish forest Lakes. Int. Rev. ges. Hydrobiol.64, 749–782 (1979).

    Google Scholar 

  98. Sverdrup, H. U.: On conditions for the vernal blooming of phytoplankton. J. Cons. Explor. Mer.18, 287–295 (1953).

    Google Scholar 

  99. Grobbelaar, J. U.: Phytoplankton productivity in turbid waters. J. Plankton Res.7, 653–663 (1985).

    Google Scholar 

  100. Vollenweider, R. A.: Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. Ital. Idrobiol.33, 53–83 (1976).

    CAS  Google Scholar 

  101. Talling, J. F.: Factor interactions and implications for the prediction of lake metabolism. Arch. Hydrobiol./Beith. Ergebn. Limnol.13, 96–109 (1979).

    Google Scholar 

  102. Kilham, S. S.: Silicon and phosphorus growth kinetics and competitive interactions betweenStephanodiscus minutus andSynedra sp. Verh. int. Verein. Limnol.22, 435–439 (1984).

    CAS  Google Scholar 

  103. Sommer, U.: The paradox of the plankton: Fluctuations of phosphorus availability maintain diversity of phytoplankton in flow-through cultures. Limnol. Oceanogr.29, 633–636 (1984).

    Google Scholar 

  104. Sommer, U., and Kilham, S. S.: Phytoplankton natural community experiments: A re-interpretation. Limnol. Oceanogr.30, 436–440 (1985).

    Article  CAS  Google Scholar 

  105. Tilzer, M. M.: Environmental and physiological control of phytoplankton productivity in large lakes. In: Tilzer, M. M., and Serruya, C. (eds.): Functional and Structural Properties of Large Lakes, Science Tech. Publishers Inc., Madison (in preparation).

  106. Tilzer, M. M.: The productivity of phytoplankton and its control by resource availability. A review. In: Kumar, H. D. (ed.):Phycotalk, Banaras Hindi University, Varanasi, India (in press).

  107. Tilzer, M. M.: Dynamik und Produktivität von Phytoplankton und pelagischen Bakterien in einem Hochgebirgsse (Vorderer Finstertaler See, Österreich). Arch. Hydrobiol. Suppl.40, 201–273 (1972).

    Google Scholar 

  108. Geller, W.: Stabile Zeitmuster in der Planktonsukzession des Bodensees. Verh. Ges. Ökologie8, 373–382 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Elster on his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tilzer, M.M., Beese, B. The seasonal productivity cycle of phytoplankton and controlling factors in Lake Constance. Schweiz. Z. Hydrol 50, 1–39 (1988). https://doi.org/10.1007/BF02538370

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02538370

Keywords

Navigation