Skip to main content
Log in

Cucumber cotyledon lipoxygenase oxygenizes trilinolein at the lipid/water interface

  • Article
  • Published:
Lipids

Abstract

The reactivity of cucumber cotyledon lipoxygenase with trilinolein was examined. The activity of the enzyme against linoleic acid rapidly decreased with increasing pH of the assay solution, and essentially no activity could be detected above pH 8.5. The rapid decrease in activity was not the result of an inactiveness of the enzyme at alkaline pH, because with trilinolein, the enzyme showed a broad pH-activity profile, and substantial activity could be detected even at pH 9.0. Rather, the decrease in activity was due to the dissociation of the linoleic acid emulsion into acid-soap aggregates and/or the monomeric form, depending on the ionization of the terminal carboxylic group. This suggests that cucumber cotyledon lipoxygenase acts only on an insoluble substrate at the lipid/water interface but not on a soluble one. High-performance liquid chromatography analyses of the products formed from trilinolein revealed that the enzyme inserted oxygen into the acyl moiety of trilinolein without hydrolysis of the ester bonds. Preincubation of the enzyme with triolein emulsions effectively abolished its activity against trilinolein added afterward. Furthermore, the enzyme was adsorbed on the trilinolein or triolein emulsion droplets in an essentially irreversible manner. A reaction velocity curve of the enzyme with trilinolein showed saturation kinetics. This is thought to be due to a regional substrate deficiency as the reaction proceeds. These lines of evidence indicate that the enzyme, once bound to the lipid/water interface, is unable to break free and bind to other emulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HPLC:

high-performance liquid chromatography

References

  1. Yamamoto, S. (1992) Mammalian Lipoxygenases: Molecular Structures and Functions,Biochim. Biophys. Acta 1128, 117–131.

    PubMed  CAS  Google Scholar 

  2. Siedow, J.N. (1991) Plant Lipoxygenase: Structure and Function,Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 145–188.

    Article  CAS  Google Scholar 

  3. Vick, B.A., and Zimmerman, D.C. (1987) Oxidative Systems for Modification of Fatty Acids: The Lipoxygenase Pathway, inThe Biochemistry of Plants (Stumpf, P.K., and Conn, E.E., eds.) Vol. 9, pp. 53–90, Academic Press, London.

    Google Scholar 

  4. Matsui, K., Irie, M., Kajiwara, T., and Hatanaka, A. (1992) Developmental Changes in Lipoxygenase Activity in Cotyledons of Cucumber Seedlings,Plant Sci. 85, 23–32.

    Article  CAS  Google Scholar 

  5. Beevers, H. (1979) Microbodies in Higher Plants,Ann. Rev. Plant Physiol. 30, 159–193.

    Article  CAS  Google Scholar 

  6. Holman, R.T. (1948) Lipoxidase Activity and Fat Composition of Germinating Soy Beans,Arch. Biochem. Biophys. 17, 459–466.

    CAS  Google Scholar 

  7. Koch, R.B., Stern, B., and Ferrari, C.G. (1958) Linoleic Acid and Trilinolein as Substrates for Soybean Lipoxidase(s),Arch. Biochem. Biophys. 78, 165–179.

    Article  PubMed  CAS  Google Scholar 

  8. Zhuang, H., Hildebrand, D.F., Andersen, R.A., and Hamilton-Kemp, T.R. (1991) Effects of Polyunsaturated Free Fatty Acids and Esterified Linoleoyl Derivatives on Oxygene Consumption and C6-Aldehyde Formation with Soybean Seed Homogenates,J. Agric. Food Chem. 39, 1357–1364.

    Article  CAS  Google Scholar 

  9. Wang, S., and Huang, A.H.C. (1987) Biosynthesis of Lipase in the Scutellum of Maize Kernel,J. Biol. Chem. 262, 2270–2274.

    PubMed  CAS  Google Scholar 

  10. Matsui, K., Irie, M., Kajiwara, T., Kakuno, T., and Hatanaka, A. (1993) Rapid Degradation of Cucumber Cotyledons Lipoxygenase,Phytochemistry 32, 1387–1391.

    Article  PubMed  CAS  Google Scholar 

  11. Bradford, M.M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding,Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  12. Akasaka, K., Ijichi, S., Watanabe, K., Ohrui, H., and Meguro, H. (1992) High-Performance Liquid Chromatography and Post-Column Derivatization with Diphenyl-1-Pyrenylphosphine for Fluorimetric Determination of Triacylglycerol Hydroperoxides,J. Chromatgr. 596, 197–202.

    Article  CAS  Google Scholar 

  13. Matsui, K., Shinta, H., Toyota, H., Kajiwara, T., and Hatanaka, A. (1992) Comparison of the Substrate Specificities of Lipoxygenases Purified from Soybean Seed, Wheat Seed, and Cucumber Cotyledons,Z. Naturforsch. 47c, 85–89.

    Google Scholar 

  14. Bengtsson, G., and Olivecrona, T. (1981) Lipoprotein Lipase: Modification of Its Kinetic Properties by Mild Tryptic Digestion,Eur. J. Biochem. 113, 547–554.

    Article  PubMed  CAS  Google Scholar 

  15. Laemmli, U.K. (1970) Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4,Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  16. Matsui, K., Kajiwara, T., Hayashi, K., and Hatanaka, A. (1988) Tissue Specific Heterogeneity of Lipoxygenase in Cucumber Seedlings,Agric. Biol. Chem. 52, 3219–3221.

    CAS  Google Scholar 

  17. Bild, G.S., Ramadoss, C.S., and Axelrod, B. (1977) Effect of Substrate Polarity on the Activity of Soybean Lipoxygenase Isoenzymes,Lipids 12, 732–735.

    CAS  Google Scholar 

  18. AlSheikhly, M., and Simic, M.G. (1989) Chain-Propagation Length of Linoleic Acid Peroxidation in Aqueous Monomeric and Micellar Systems,J. Phys. Chem. 93, 3103–3106.

    Article  CAS  Google Scholar 

  19. Clapp, C.H., Banerjee, A., and Rotenberg, S.A. (1985) Inhibition of Soybean Lipoxygenase 1 byN-Alkylhydroxylamines,Biochemistry 24, 1826–1830.

    Article  PubMed  CAS  Google Scholar 

  20. Schilstra, M.J., Veldink, G.A., and Vliegenthart, J.F.G. (1994) The Dioxygenation Rate in Lipoxygenase Catalysis is Determined by the Amount of Iron (III) Lipoxygenase in Solution,Biochemistry 33, 3974–3979.

    Article  PubMed  CAS  Google Scholar 

  21. Farmer, E.E., and Ryan, C.A. (1992) Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors,Plant Cell 4, 129–134.

    Article  PubMed  CAS  Google Scholar 

  22. Brash, A.R., Ingram, C.D., and Harris, T.M. (1987) Analysis of a Specific Oxygenation Reaction of Soybean Lipoxygenase-1 with Fatty Acids Esterified in Phospholipids,Biochemistry 26, 5465–5471.

    Article  PubMed  CAS  Google Scholar 

  23. Eskola, J., and Laakso, S. (1983) Bile Salt-Dependent Oxygenation of Polyunsaturated Phosphoatidylcholines by Soybean Lipoxygenase-1,Biochim. Biophys. Acta 751, 305–311.

    CAS  Google Scholar 

  24. Kuhn, H., Belkner, J., Wiesner, R., and Brash, A.R. (1990) Oxygenation of Biological Membranes by the Pure Reticulocyte Lipoxygenase,J. Biol. Chem. 265, 18351–18361.

    PubMed  CAS  Google Scholar 

  25. Rapoport, S.M., and Schewe, T. (1986) The Maturational Breakdown of Mitochondria in Reticulocytes,Biochim. Biophys. Acta 864, 471–495.

    PubMed  CAS  Google Scholar 

  26. Jain, M.K., and Gelb, M.H. (1991) Phospholipase A2-Catalyzed Hydrolysis of Vesicles: Uses of Interfacial Catalysis in the Scooting Mode,Method. Enzymol. 197, 112–125.

    Article  CAS  Google Scholar 

  27. Wong, H., Davis, R.C., Thuren, T., Goers, J.W., Nikazy, J., Waite, M., and Schotz, M.C. (1994) Lipoprotein Lipase Domain Function,J. Biol. Chem. 269, 10319–10323.

    PubMed  CAS  Google Scholar 

  28. Maliwal, B.P., Yu, B.-Z., Szmacinski, H., Squier, T., Binsbergen, J., Slotboom, A.J., and Jain, M.K. (1994) Functional Significance of the Conformational Dynamics of the N-terminal Segment of Secreted Phospholipase A2 at the Interface,Biochemistry 33, 4509–4516.

    Article  PubMed  CAS  Google Scholar 

  29. Winkler, F.K., D'Arcy, A., and Hunziker, W. (1990) Structure of Human Pancreatic Lipase,Nature 343, 771–774.

    Article  PubMed  CAS  Google Scholar 

  30. Boyington, J.C., Gaffney, B.J., and Amzel, L.M. (1993) The Three-Dimensional Structure of an Arachidonic Acid 15-Lipoxygenase,Science 260, 1482–1486.

    Article  PubMed  CAS  Google Scholar 

  31. Radetzky, R., Feussner, I., Theimer, R.R., and Kindl, H. (1993) Transient Occurrence of Lipoxygenase and Glycoprotein gp49 in Lipid Bodies During Fat Mobilization in Anise Seedings,Planta 191, 166–172.

    Article  CAS  Google Scholar 

  32. Banas, A., Johansson, I., and Stymne, S. (1992) Plant Microsomal Phospholipases Exhibit Preference for Phosphatidylcholine with Oxygenated Acyl Groups,Plant Sci. 84, 137–144.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Matsui, K., Kajiwara, T. Cucumber cotyledon lipoxygenase oxygenizes trilinolein at the lipid/water interface. Lipids 30, 733–738 (1995). https://doi.org/10.1007/BF02537800

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02537800

Keywords

Navigation