Skip to main content
Log in

Development of phosphatized hardgrounds in the miocene Globigerina Limestone of the maltese archipelago, including a description ofGamopleura melitensis sp. nov. (Gastropoda, Euthecosomata)

  • Published:
Facies Aims and scope Submit manuscript

Summary

In the Maltese Islands two phosphorite layers occur in the Globigerina Limestone Formation (?Aquitanian to Langhian). These layers, labeled C1 and C2, display a multi-stage development with a two-stage hardground development on top (labelled lower and upper hardground).

In the lower hardground, lithification and mineralization followed a sedimentary framework betweenThalassinoides burrows, resembling the Cretaceous ‘nodular chalks’ which were marginally phosphatized when they became exposed to the sea floor. In Phosphorite Layer C2, development of this lower hardground has been superimposed by small-scale cycles. It is underlain by one or more omission surfaces each followed by phosphate-rich, bioturbated biomicrites.

Thalassinoides burrows have been filled with phosphatized particles floating in a chalk-like biomicritic matrix. Particles comprise invertebrate and vertebrate fossils, nodules and intraformational clasts, which represent the same composition as in the superjacent, upper hardground.

Biogenes consist of a diverse, mostly primary aragonitic fauna, among them assemblages of holoplanktonic gastropods of at least 25–30 species. Especially in northwest Gozo and northern Malta pteropods of the hardground layer C1 may accumulate to ooze-like concentrations, dominated by the relatively large speciesGamopleura melitensis sp. nov., exclusively known from this area so far.

Phosphatization must have taken place before dissolution of the aragonite, since many fossils are preserved as phosphatized internal moulds and in many instances the formerly aragonitic shell itself has been replaced by phosphorous minerals. Phase analyses by XR-diffraction show replacement by calcite (30–40%), by carbonate-hydroxylapatite (50–60%), and fluorellestadite (less than 10%). Lateral changes in faunal assemblages and their extraordinary good preservation suggest an autochthonous origin of the phosphatized components.

The lower hardgrounds of C1 and C2 represent the terminal product of prolonged times of non-deposition, probably caused by strong bottom currents during sea level lowstands. Phosphatized particles and sediment were trapped in burrows but have been prevented from settling on the sea floor. The upper hardground, instead, developed at times of waning bottom currents when particles could again accumulate. Only the finer chalky biomicritic sediments were winnnowed, leaving behind a phosphatized bio-rudstone which has been intensively cemented, possibly as a result of the dissolved aragonite. These sediments were deposited during a renewed sea level rise.

Phosphorite Layer C1 shows little lateral facies changes except for the faunal assemblages. Phosphorite Layer C2, instead, shows considerable lateral variations which is related to different degrees of condensation due to a more differentiated relief and/or bottom currents.

During phosphorite development oxic conditions with low input of organic carbon prevailed. This was due to increased bottom currents during times of sea level lowstands. This does not meet the conditions in an upwelling region. A possible mechanism triggering phosphogenesis is presented for the Maltese deposits.

In the appendix a description ofGamopleura melitensis sp. nov. is given, representing the major characteristic pteropod species in C1, including details on the formerly aragonitic microstructure of the exceptionally well preserved shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bandel, K. (1977): Die Herausbildung der Schraubenschicht der Pteropoden.—Biomineralisation9, 73–85, Mainz

    Google Scholar 

  • Balson, P. (1990): Episodes of phosphogenesis and phosphorite concretion formation in the North Sea Tertiary.—In:Notholt, A.J.G. & Jarvis, I. (eds.): Phosphorite research and development.— Geol. Soc. London Spec. Pub.52, 125–137, London

  • Bé, A.W.H., MacClintock, C. &Currie, D.C. (1972): Helical shell structure and growth of the pteropodCuvierina columnella (Rang) (Mollusca, Gastropoda).—Biomineralisation4, 47–49, Mainz

    Google Scholar 

  • Bellardi, I. (1873): I molluschi dei terreni terziari del Piemonte e della Liguria, 1. Cephalopoda, Pteropoda, Heteropoda, Gastropoda (Muricidae er Tritonidae).—Mem. r. Accad. Sc. Torino,2/27, 1–264, Torino

    Google Scholar 

  • Berger, W.H. (1974): Deep sea sedimentation.—In:Burk;C.A. &Drake, C.L. (eds.): The geology of continental margins.— 213–241, New York (Springer)

    Google Scholar 

  • Blondel, T.J.A., Gorin, G.E. &JanDuChène, R. (1993): Sequence stratigraphy in coastal environments: sedimentology and palynofacies of the Miocene in central Tunesia.—Int. Ass. Sediment. Spec. Publ.,18, 161–179, London (Blackwell)

    Google Scholar 

  • Blow, W.H. (1969): Late middle Eocene to Recent planktonic foraminiferal biostratigraphy.—Proc. 1st Int. Conf. Planktonic Microfossils1, 199–422, Geneva 1967

    Google Scholar 

  • Bonsignore, G., Bortolami, G., Elter, G., Montrasio, A. Petrucci, F. Ragni, U., Sacchi, R., Sturani, C. & Zanella, E (1969): Note illustrativa della carta geologica d’Italia alla scala 1: 100000, fogli 56 e 57, Torino-Vercelli.—Serv. Geol. d’Italia, Napoli, 1–96, Napoli

  • Bromley, R.G. (1967): Some observations on burrows of thalassinidean Crustacea in chalk hardgrounds.—Quat. J. geol. Soc. Lond.,123, 157–182, London

    Google Scholar 

  • Bromley, R.G. &Gale, A.S. (1982): The lithostratigraphy of the English Chalk Rock.—Cretaceous Res.,3, 273–306, London (Academic Press)

    Google Scholar 

  • Bukry, D. (1981): Cenozoic coccoliths from the Deep Sea Drilling Project.—Soc. Econ. Paleont. Miner., Spec. Pub.,32, 335–353, Tulsa

    Google Scholar 

  • Carbone, S., Grasso, M., Lantini, F. &Pedley, H.M. (1987): The distribution and palaeoenvironment of Early Miocene phosphorites of southeast Sicily and their relationships with the Maltese phosphorites.—Palaeogeogr., Palaeoclimatol., Palaeoecol.,58, 35–53, Amsterdam (Elsevier)

    Google Scholar 

  • Cook, P.J. (1984): Spatial and temporal controls on the formation of phosphate deposits—a review.—In:Nriagu, J.O. &Moore, P.B. (eds.): Phosphate Minerals.—242–274, New York (Springer)

    Google Scholar 

  • Cook, P.J. &McElhinny, M.W. (1979): A reevaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics.—Economic Geology74, 315–330, New Haven Conn.

    Article  Google Scholar 

  • DiGeronimo, I, Grasso, M. &Pedley, H.M. (1981): Palaeoenvironment and palaeogeography of Miocene marls from southeast Sicily and the Maltese Islands.—Palaeogeogr., Palaeoclimatol., Palaeoecol.,34, 173–189, Amsterdam (Elsevier)

    Google Scholar 

  • Felix, R. (1973): Oligo-Miocene stratigraphy of Malta and Gozo.— 104pp., Wageningen (Veenman)

    Google Scholar 

  • Föllmi, K.B. (1990): Condensation and phosphogenesis: Example of the Helvetic Mid-Cretaceous (northern Tethyan margin).—Geol. Soc. London Spec. Pub.52, 237–252, London

    Google Scholar 

  • Gianelli, L. &Salvatorini, G. (1972; 1975): I foraminiferi planctonici dei sedimenti terziari dell arcipelago Maltese, 1. Biostratigrafia del ‘Globigerina Limestone’, 2. di ‘Blue Clay’, ‘Greensand’ e ‘Upper Coralline Limestone’.—Atti Soc. Tosc. Sci. Nat.,A, 79, 49–74 (1), 82, 1–24 (2), Milano

    Google Scholar 

  • Glenn, C.R.;Föllmi, K.B. Riggs, S.R.;Baturin, G.N.;Grimm, K.A.;Trappe, J. Abed, A.M.;Galli-Olivier, C.;Garrison, R.E.;Ilyin, A.V.;Jehl, C.;Rohrlich, V.;Sadaqah, R.M.Y.;Schidlowski, M.;Sheldon, R.E. &Siegmund, H. (1994): Phosphorous and phosphorites: sedimentology and environments of formation.—Eclogae geol. Helv.87, 747–788, Basel

    Google Scholar 

  • Hancock, J.M. (1975): The sequence of facies in the Upper Cretaceous of northern Europe compared with that in the Western Interior.—In:Caldwell, W.G.E. (ed.): The Cretaceous system in the Western Interior of North America.—Geol. Ass. Canada Spec. Pap.,13, 83–118, Toronto

  • — (1989): Sea-level changes in the British region during the Late Cretaceous.—Proc. Geol. Ass.100, 565–594, London

    Article  Google Scholar 

  • Heggie, D.T., Skyring, G.W., O’Brien, G.W., Reimers, C., Herczeg, A. Moriarty, D.J.W., Burnett, W.C. & Milnes, A.R. (1990): Organic carbon cycling and modern phosphorite formation on the East Australian continental margin: an overview.—In:Notholt, A.J.G. & Jarvis, I. (eds.): Phosphorite research and development.—Geol. Soc. London Spec. Pub.52, 87–117, London

  • Hojjatzadeh, M. (1978):Discoaster of the Blue Clay (Middle Miocene) of Malta and Gozo.—Geological Magazine115, 1–19, London

    Article  Google Scholar 

  • Iarvis, I. (1992): Sedimentology, geochemistry and origin of phosphatic chalks: the Upper Cretaceous deposits of NW Europe.—Sedimentology,39, 55–97, Amsterdam (Elsevier)

    Google Scholar 

  • Janssen, A.W. (1990): Long distance correlation of Cainozoic deposits by means of planktonic gastropods (‘Pteropods’); some examples of future possibilities.—Tertiary Res.,11, 65–72, Utrecht

    Google Scholar 

  • Janssen, A.W. (in press): Systematic revision of holoplanktonic mollusca in the collection of the Dipartimento di Scienze della Terra at Torino, Italy.—Mem. Soc. Sc. nat. Torino, Torino

  • Keller, G. &Barron, G.A. (1983): Paleoceanographic implications of Miocene deep-sea hiatuses.—Geol. Soc. Am. Bull.,94, 590–613, Tulsa

    Article  Google Scholar 

  • — (1987): Paleodepth distribution of Neogene deep-sea hiatuses.—Paleoceanography2, 697–713, Washington

    Article  Google Scholar 

  • Kennedy, W.J. &Garrison, R.E. (1975): Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England.—Sedimentology,22, 311–386, Amsterdam (Elsevier)

    Google Scholar 

  • Kienel, U.;Rehfeld U., &Bellas, S. (1995): The Miocene Blue Clay of the Maltese Islands: Sequence stratigraphic and palaeoceanographic implications based on nannofossil stratigraphy.—Berliner Geowiss. Abh.E 16 (G. Ernst Festschrift), 533–547, Berlin

    Google Scholar 

  • Loutit, T.S.; Hardenbol, J.; Vail, P.R. & Baum, G.R. (1988): Condensed sections: the key to age determination and correlation of continental margin sequences.—In: Sea Level Changes: An Integrated Approach.—Soc. Econ. Paleont. Mineral. Spec. Pub.42, 183–213, Tulsa

  • Mazzei, R. (1985): The Miocene sequence of the Maltese Islands: biostratigraphic and chronostratigraphic references based on nannofossils.—Atti Soc. Tosc. Sci. Nat.,A 92, 165–197, Milano

    Google Scholar 

  • Meulenkamp J.E. &Hilgen, F.J. (1986): Event stratigraphy, basin evolution and tectonics of the Hellenic and Calbro-Sicilian arcs.—In:Wezel, F.-C. (ed.): The origin of arcs.—Developments in Geotectonics21, 327–350, Amsterdam (Elsevier)

    Google Scholar 

  • O’Brien, G.W.;Milnes, A.R.;Veeh, H.H.;Heggie, D.T.;Riggs;S.R.;Cullen, D.J.;Marshall, J.F. &Cook, P.J. (1990): Sedimentation dynamics and redox iron-cycling: controlling factors for the apatite-glauconite association on the East Australian continental margin.—In:Notholt, A.J.G. &Jarvis, I. (eds.): Phosphorite Research and Development.—Geol. Soc. London Spec. Publ.52, 61–86, Oxford (Blackwell)

    Google Scholar 

  • Ognibien, L. Vezzani, L. (1975): Nappe structures in Sicily, Calabria and Lucania, Italy.—In:Squyres, C.H. (ed.): The Geology of Italy.—83–104, Tripoli

  • Pedley, H.M. (1981): Sedimentology and palaeoenvironment of the southeast Sicilian Tertiary platform carbonates.— Sediment. Geol.,28, 273–291, Amsterdam (Elsevier)

    Google Scholar 

  • Pedley, H.M., House, M.R. &Waugh, B. (1978):The geology of the Pelagian Block: the Maltese Islands.—In:Nairn, A.E.M. &Kanes, W.H. (eds.): The ocean basins and margins,4b. The western Mediterranean.—417–433, New York (Plenum Press)

    Google Scholar 

  • Pedley, H.M. &Bennett, S.M. (1985): Phosphorites, hardgrounds and syndepositional solution subsidence: a palaeoenvironmental model from the Miocene of the Maltese Islands.— Sediment. Geol.45, 1–34, Amsterdam (Elsevier)

    Google Scholar 

  • Riggs, S.R. (1987): Model of Tertiary phosphorites on the worlds continental margins.—In:Teleki, P.G., Dobson, M.R., Moore, J.R. & Von Stackelburg, U. (eds.): Marine Minerals, advances in research and resource assessment.—NATO ASI series, Series C, Mathematical and Physical Sciences194, 99–118, London

  • Riggs, S.R. & Sheldon, R.P. (1990): Paleoceanographic and paleoclimatic controls of the temporal and geographic distribution of Upper Cenozoic continental margin phosphorites. —In:Burnett, W.C. & Riggs, S.R. (eds.) Phosphate deposits of the world, 3 Neogene to modern phosphorites.—207–222, Cambridge

  • Rio, D., Fornaciari, E. & Raffi, I. (1990): Late Oligocene through Early Pleistocene calcareous nannofossils from western equatorial Indian Ocean (LEG 115).—In:Duncan, R.A., Backman, J. Peterson, L.C. et al. (eds.): Proc. ODP, Sci. Results115, 175–235, College Station

  • Robba, E. (1971): Associazioni a pteropodi della formazione di Cessole (Langhiano).—Riv. Ital. Paleont.77/1, 19–126, Milano

    Google Scholar 

  • Rose, E.P.F.;Pratt, S.K. &Bennett, S.M. (1992): Evidence for sea-level changes in the Globigerina Limestone Formation (Miocene) of the Maltese Islands.—Paleontologia Evolucio,24–25, 265–276, Barcelona

    Google Scholar 

  • Saint-Martin, J.P. André, J.P. (1992): Les constructions coralliennes de la platforme carbonatée messinienne de Malte (Mediterranée Centrale).—Géologie Mediterranée19, 145–163, Marseille

    Google Scholar 

  • Sheldon, R.P. (1980): Episodicity of phosphate deposition and deep ocean circulation—a hypothesis.—Soc. Econ. Paleont. Mineral. Spec. Pub.29, 239–247, Tulsa

    Google Scholar 

  • — (1981): Ancient marine phosphorites.—Ann. Rev. Earth Planet. Sci.9, 251–284, Palo Alto California

    Article  Google Scholar 

  • Simonelli, V. (1895): Sopra un nuovo pteropodo nel Miocene di Malta.—Boll. Soc. Geol. It.14, 19, Roma

    Google Scholar 

  • Snyder, S. W. (1988): Synthesis of biostratigraphic and paleoenvironmental interpretations of Miocene sediments from the shallow water subsurface of Onslow Bay, North Carolina continental shelf.—Cushman Found. Foram. Res. Spec. Pub.25, 179–189, Lawrence Kansas

    Google Scholar 

  • Visser, J.P. de (1991): Clay mineral stratigraphy of Miocene to Recent marine sediments in the Central Mediterranean.—Geologica Ultraiectina75, 234 pp., Utrecht

    Google Scholar 

  • Zammit-Maempel, G. (1982): The folklore of Maltese fossils.—Pop. Med. Soc. Stud.1, 1–29, Valetta

    Google Scholar 

  • — (1989): Pioneers of Maltese geology.—302 pp., Malta (Mid-Med Bank)

    Google Scholar 

  • Ziegler, P.A. (1988): Evolution of the Arctic-North Atlantic and the western Tethys.—Amer. Assoc. Petrol. Geol. Mem.43, Pl. 19, Tulsa

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rehfeld, U., Janssen, A.W. Development of phosphatized hardgrounds in the miocene Globigerina Limestone of the maltese archipelago, including a description ofGamopleura melitensis sp. nov. (Gastropoda, Euthecosomata). Facies 33, 91–106 (1995). https://doi.org/10.1007/BF02537445

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02537445

Keywords

Navigation