Skip to main content
Log in

A general mathematical modelling for heat and mass transfer in unsaturated porous media: an application to free evaporative cooling

Verallgemeinerte mathematische Modellierung des Wärme- und Stoffaustausches in nicht vollständig getränkten Medien

  • Originals
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The present paper develops a general mathematical model with some improvements in mass, momentum and energy equations, which introduce more transport mechanisms to simulate simultaneous transfer of heat and mass in the porous media unsaturated with liquid. Numerical calculation results in two-dimension are obtained for the vertical packed bed with its right opening surface exposing to atmospherical environment. The calculating data can demonstrate the cooling effect of the water evaporation for the bed if it is used as a cooling wall of building for room air-conditioning in the hot and dry climate.

Zusammenfassung

In der vorliegenden Arbeit wird ein verallgemeinertes mathematisches Modell entwickelt, wobei hinsichtlich der Impuls-, der Kontinuitäts- und der Energiegleichungen einige Verbesserungen Eingang finden, die durch Hinzufügung weiterer Transportmechanismen eine Simulation des gleichzeitigen Wärme- und Stoffaustausches in nicht vollständig getränkten porösen Medien ermöglichen. Numerische Ergebnisse für ein zweidimensional betrachtetes, vertikal gepacktes Bett mit rechtsseitig offener, in Verbindung mit der Außenatmosphäre stehender Begrenzung, werden mitgeteilt. Die Berechnungsdaten belegen den Kühlungseffekt, der durch Wasserverdunstung aus dem Bett erzielbar ist, wenn dieses in heißen und trockenen Gebieten als Kühlwand ausgebildet wird, um eine Raumklimatisierung zu bewirken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

area, m2

c :

specific heat, J/(Kg·K)

D l :

diffusivity of water in porous materials, m2/s

D v :

molecular diffusivity of vapor in air, m2/s

D Tv :

diffusivity defined in Eq. (11), m2/(s·K)

D lv :

diffusivity defined in Eq. (12), m2/s

g :

acceleration of gravity, m/s2

h :

convective heat transfer coefficient, W/(m2·K)

h m :

convective mass transfer coefficient, m/s

H :

horizontal width inx direction of bed, m

k m :

apparent thermal conductivity, W/(m·K)

K g :

infiltrating conductivity of gas mixture, m/s

K l :

hydraulic conductivity of water, m/s

L :

vertical height iny direction of bed, m

\(\dot m\) :

mass rate of phase change per unit volume, Kg/(m3·s)

m :

mean vapor quantity in porous bed per unit volume, Kg/m3

\(\vec n\) :

normal vector

p :

pressure, Pa

\(\vec q_v \) :

vapor diffusion flux, kg/(m2·s)

q r :

solar radiation, W/m2

RH, h :

relative humidity in ambient air, or in gas mixture, %

S :

liquid saturation, %

t :

time, s

T :

temperature, K (°C)

u :

velocity component inx-direction, m/s

v :

velocity component iny-direction, m/s

\(\vec V,\vec v\) :

velocity vectors, m/s

V :

averaging volume, m3

V t :

volume of porous packed bed, m3

\(\vec w\) :

velocity vector of gas-liquid interface, m/s

α:

tortuosity factor in Eq. (2)

β:

thermal expansion coefficient, 1/K

γ:

latent heat, J/Kg

ε:

phase content, %

ν:

kinematic viscosity, m2/s

ρ:

density, Kg/m3

υ:

mass flow factor in Eq. (2)

ϕ:

porosity, %

Ψ:

water pressure potential, m

Φ:

actual value of certain physical quantity

a :

air, ambient

cw :

cooling wall

g :

gas mixture

gl :

gas-liquid interface

i :

inside surface

l :

liquid, water

References

  1. Philip, J. R.;DeVries, D. A.: Moisture movement in porous materials under temperature gradients. Trans. Am. Goephys. Union 38 (1957) 222–232

    Google Scholar 

  2. DeVries, D. A.: Simultaneous transfer of heat and moisture in porous media. Trans. Am. Goephys. Union 39 (1958) 909–916

    Google Scholar 

  3. Luikov, A. V.: Heat and Mass Transfer in Capillary Porous-Rodies. Oxford: Pergamon Press (1966)

    Google Scholar 

  4. Luikov, A. V.: System of differential equation of heat and mass transfer in capillary porous-bodies. Int. J. Heat Mass Transfer 18 (1975) 1–14

    Article  MATH  Google Scholar 

  5. Slattery, J. C.: General balance equation for a phase interface. Ind. Eng. Chem. Fundam. 6 (1967) 108–118

    Article  Google Scholar 

  6. Slattery, J. C.: Two-phase flow through porous media. AIChE J. 16 (1970) 345–354

    Article  Google Scholar 

  7. Whitaker, S.: Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying. Advances in Heat Transfer. New York: Academic Press (1977)

    Google Scholar 

  8. Whitaker, S.: Heat and mass transfer in granular porous media. Advances in Drying 1 (1980) 23–61

    MathSciNet  Google Scholar 

  9. Berger, D.;Pei, D. C. T.: Drying of hydroscopic capillary porous solids — a theoretical approach. Int. J. Heat Mass Transfer 16 (1973) 293–302

    Article  Google Scholar 

  10. Eckter, E. R. G.;Faghri, M.: A general analysis of moisture migration caused by the temperature differences in an unsaturated porous medium. Int. J. Heat Mass Transfer 23 (1980) 1613–1623

    Article  Google Scholar 

  11. Udell, K. S.: Heat transfer in porous media heated from above with evaporation, condensation and capillary effects. J. Heat Transfer 105 (1983) 485–492

    Google Scholar 

  12. Vafai, K.;Whitaker, S.: Simultaneous heat and mass transfer accompanied by phase change in porous insulation. J. Heat Transfer 108 (1986) 132–140

    Google Scholar 

  13. Vafai, K.;Tien, H. C.: A numerical investigation of phase change effects in porous materials. Int. J. Heat Mass Transfer 32 (1989) 1261–1277

    Article  Google Scholar 

  14. Cheng, P.;Pei, D. C. T.: A mathematical model of drying process. Int. J. Heat Mass Transfer 32 (1989) 297–310

    Article  Google Scholar 

  15. Gray, W. G.;O’Neill, K.: On the general equations for flow in porous media and their reduction to Darcy’s law. Water Resour. Res. 12 (1976) 148–154

    Google Scholar 

  16. Reddy, G. B.;Mulligan, J. C.: Macroscopic continuum analysis of simultaneous heat and mass transfer in unsaturated porous materials containing a heat source. Int. Commun. Heat Mass Transfer 14 (1987) 251–263

    Article  Google Scholar 

  17. Bird, R. B.;Stewart, W. E.;Lightfoot, E. N.: Transport phenomena New York: Wiley (1960)

    Google Scholar 

  18. Reddy, G. B.; Liu, W.: A simplified analytical model to estimate vapor and heat diffusion rate through an unsaturated clay bed coupled to a heat pump. Proc. First Int. Conf. Energy Conver. Energy Sour. Eng. Wuhan, China. (1990) 239–243

  19. Mayhew, Y. R.;Rogers, G. F. C.: Thermodynamics and Transport Properties of Fluid. Oxford: Blackwell (1976)

    Google Scholar 

  20. Ewen, J.;Thomas, H. R.: Heating unsaturated medium sand. Geotechnique 39 (1989) 455–470

    Article  Google Scholar 

  21. Bear, J.: Dynamics of Fluids in Porous Media. New York: Am. Elsevier Publish Co. (1972)

    MATH  Google Scholar 

  22. Jury, W. A.;Miller, E. E.: Measurement of the transport coefficients for coupled flow of heat and moisture in a medium sand. Soil Sci. Soc. Amer. Proc. 38 (1974) 551–557

    Article  Google Scholar 

  23. Liu, W.;Li, K. Q.;Wang, C. Q.;Cheng, S. M.: Performance prediction for evaporative refrigeration and heat and mass transfer in porous media. J. Huazhong Univ. Sci. Tech. 20 (1992) 103–108

    Google Scholar 

  24. Zhang, Z.;Liu, W.;Cheng, S. M.;Wang, C. Q.: Heat and moisture migration in the vertical porous bed. J. Huazhong Univ. Sci. Tech. 21 (1993) 58–63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This project is supported by the National Natural Science Foundation of PR China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Peng, S.W. & Mizukami, K. A general mathematical modelling for heat and mass transfer in unsaturated porous media: an application to free evaporative cooling. Heat and Mass Transfer 31, 49–55 (1995). https://doi.org/10.1007/BF02537421

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02537421

Keywords

Navigation