Skip to main content
Log in

Eicosapentaenoic acid inhibits tube formation of vascular endothelial cellsin vitro

  • Published:
Lipids

Abstract

We previously have described a quantitative angiogenesisin vitro model, in which endothelial cells are cultured between two layers of type I collagen gel and become organized into tube-like structures. Using this model, the effect of eicosapentaenoic acid (20∶5n−3) on tube formation was investigated. When the endothelial cells isolated from bovine carotid artery were treated for 2 days with 5 μg/mL of arachidonic acid (20∶4n−6), eicosapentaenoic acid or docosahexaenoic acid (22∶6n−3), these polyunsaturated fatty acids were extensively incorporated into cellular phospholipids. The content of arachidonic, eicosapentaenoic and docosahexaenoic acid increased from 9.58% to 23.29%, from 0.98% to 11.76% and from 6.88% to 18.40%, respectively. When the eicosapentaenoic acid-treated cells were cultured between collagen gels, the tube-forming ability of the cells was markedly inhibited. The inhibition was dose-dependent between 1.0 and 5.0 μg/mL of eicosapentaenoic acid. At 5.0 μg/mL of eicosapentaenoic acid the inhibition reached 76%. By contrast, arachidonic acid increased tube formation, and docosahexaenoic acid had no effect. To elucidate the mechanism of eicosapentaenoic acid induced inhibition ofin vitro tube formation, we examined the effect of the acid on the proliferation of endothelial cells. Eicosapentaenoic acid at any dose (<5.0 μg/mL) had no effect on the proliferation of endothelial cells cultured on plastic plates without collagen gel. However, when the cells were cultured between collagen gels, eicosapentaenoic acid inhibited cell growth in a dose-dependent manner with maximum inhibition being observed at 2.5 μg/mL. These data suggest that eicosapentaenoic acid suppresses tube formation of endothelial cells, at least in part,via its inhibitory effect on cellular proliferation. Thus eicosapentaenoic acid may act as an endogenous inhibitor of angiogenesis under various pathological conditions, including tumor growth and chronic inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AA:

arachidonic acid

DHA:

docosahexaenoic acid

EDTA:

ethylenediaminetetraacetic acid

EPA:

eicosapentaenoic acid

FBS:

fetal bovine serum

L:

lumen

MEM:

Eagle's minimum essential medium

PG:

prostaglandin

PGE2 :

prostaglandin E2

RIA:

radioimmunoassay

TGF-β:

transforming growth factor-β

References

  1. Folkman, J. (1985)Adv. Cancer Res. 43, 175–203.

    Article  PubMed  CAS  Google Scholar 

  2. D'Amore, P.A., and Braunhat, S.J. (1988) inEndothelial Cells (Ryan, U.S., ed.) Vol. 2, pp. 13–37, CRC Press, Boca Raton.

    Google Scholar 

  3. Taylor, S., and Folkman, J. (1982)Nature 297, 307–312.

    Article  PubMed  CAS  Google Scholar 

  4. Crum, R., Szabo, S., and Folkman, J. (1985)Science 230, 1375–1378.

    Article  PubMed  CAS  Google Scholar 

  5. Folkman, J., Weisz, P.B., Joullie, M.M., Li, W.W., and Ewing, W.R. (1989)Science 243, 1490–1493.

    Article  PubMed  CAS  Google Scholar 

  6. Rastinejad, F., Polverini, P.J., and Bouck, N.P. (1989)Cell 56, 345–355.

    Article  PubMed  CAS  Google Scholar 

  7. Shimokawa, H., Lam, J.Y.T., Chesebro, J.H., Bowie, E.J.W., and Vanhoutte, P.M. (1987)Circulation 76, 898–905.

    PubMed  CAS  Google Scholar 

  8. Fox, P.L., and DiCorleto, P.E. (1988)Science 241, 453–456.

    Article  PubMed  CAS  Google Scholar 

  9. Morita, I., Kanayasu, T., and Murota, S. (1984)Biochim. Biophys. Acta 792, 304–309.

    PubMed  CAS  Google Scholar 

  10. Kanayasu, T., Nakao-Hayashi, J., Asuwa, N., Morita, I., Ishii, T., Ito, H., and Murota, S. (1989)Biochem. Biophys. Res. Commun. 159, 572–578.

    Article  PubMed  CAS  Google Scholar 

  11. Suzuki, Y., Morita, I., Ishizaki, Y., Aamane, Y., and Murota, S. (1989)Biochim. Biophys. Acta 1012, 135–139.

    Article  PubMed  CAS  Google Scholar 

  12. Bligh, E.G., and Dyer, W.J. (1959)Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  13. Ohtsu, A., Fujii, K., and Kurozumi, S. (1988)Prostaglandins Leukotrienes and Essential Fatty Acids 33, 35–39.

    Article  CAS  Google Scholar 

  14. Form, D.M., and Auerbach, R. (1983)Proc. Exp. Biol. Med. 172, 214–218.

    CAS  Google Scholar 

  15. Matsubara, T., Saura, R., Hirohata, K., and Ziff, M. (1989)J. Clin. Invest. 83, 158–167.

    PubMed  CAS  Google Scholar 

  16. Matsubara, T., and Ziff, M. (1987)J. Clin. Invest. 79, 1440–1446.

    Article  PubMed  CAS  Google Scholar 

  17. Kremer, J.M., Jubiz, W., Michaleck, A., Rynes, R.I., Bartholomew, L.E., Bigaouette, J., Timchalk, M., Beeler, D., and Lininger, L. (1987)Annals Int. Med. 106, 497–503.

    CAS  Google Scholar 

  18. Karmali, R.A., Marsh, J., and Fuchs, C. (1984)J. Natl. Cancer Inst. 73, 457–461.

    PubMed  CAS  Google Scholar 

  19. Madri, J.A., Pratt, B.M., and Tucker, A.M. (1988)J. Cell Biol. 106, 1375–1384.

    Article  PubMed  CAS  Google Scholar 

  20. Reich, R., Royce, L., and Martin, G.R. (1989)Biochem. Biophys. Res. Commun. 160, 559–564.

    Article  PubMed  CAS  Google Scholar 

  21. Maione, T., Gray, G., Petro, J., Hunt, A., Donner, A., Bauer, S., Carson, H., and Sharpe, R. (1990)Science 247, 77–79.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Kanayasu, T., Morita, I., Nakao-Hayashi, J. et al. Eicosapentaenoic acid inhibits tube formation of vascular endothelial cellsin vitro . Lipids 26, 271–276 (1991). https://doi.org/10.1007/BF02537136

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02537136

Keywords

Navigation