Skip to main content

Advertisement

Log in

Studies on the mechanism of the ursodeoxycholic acid-induced increase in hepatic low-density lipoprotein binding

  • Article
  • Published:
Lipids

Abstract

Previously, we have shown, in golden Syrian hamsters, that chronic feeding of ursodeoxycholic acid (UDCA), in contrast to that of its 7α-epimer, chenodeoxycholic acid (CDCA), produced a significant increment in hepatic low-density lipoprotein (LDL) uptake, despite similar suppression of bile acid synthesis by both bile acids. Evidence for a direct effect of this bile acid on hepatic LDL metabolism was shownin vitro, with isolated hamster hepatocytes, suggesting that this effect was unique to UDCA and specific for receptor-mediated LDL catabolism. The aim of the present study was to define the cellular mechanism(s) associated with this phenomenon, using male golden Syrian hamsters. Regardless of chronic exposure of the liver to either UDCA or CDCA, acute incubation with UDCA consistently resulted in an increase of LDL binding to isolated hepatocytes by 15 to 40%. Furthermore, chronic treatment with either UDCA or CDCA did not result in alterations in lipoprotein particle composition. Likewise, incubation of hepatocytes with UDCA was not associated with a change of the membrane lipid composition. In isolated liver membrane fractions, UDCA increased both the maximum number of LDL binding sites and the affinity constant for LDL by around 35% suggesting an interaction of UDCA with the LDL receptor, at the plasma membrane level, independent of an effect on receptor cycling. The results of the studies support a role for UDCA in the recruitment of cryptic LDL receptors from a cellular membrane pool, possibly due to the unique localization of UDCA in the plasma membrane lipid bilayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CDCA:

chenodeoxycholic acid

FC:

free cholesterol

GUDCA:

glycine conjugate of UDCA

HDL:

high-density lipoprotein

IDL:

intermediate-density lipoprotein

LDL:

low-density lipoprotein

PAGE:

polyacrylamide gel electrophoresis

PC:

phosphatidylcholine

PL:

phospholipid

TG:

triglyceride

TUDCA:

taurine conjugate of UDCA

UDCA:

ursodeoxycholic acid

VLDL:

very low density lipoprotein

References

  1. Brown, M.S., and Goldstein, J.L. (1986) A Receptor-Mediated Pathway for Cholesterol Homeostasis,Science 232, 34–47.

    Article  PubMed  CAS  Google Scholar 

  2. Vega, G.L., and Grundy, S.M. (1987) Mechanism of Primary Hypercholesterolemia in Humans,Am. Heart J. 113, 493–502.

    Article  PubMed  CAS  Google Scholar 

  3. Mahley, R.W., Hui, D.Y., and Innerarity, T.L. (1981) Two Independent Lipoprotein Receptors on Hepatic Membranes of Dog, Swine, and Man,J. Clin. Invest. 68, 1197–1206.

    PubMed  CAS  Google Scholar 

  4. Turley, S.D., and Dietschy, J.M. (1988) The Metabolism and Excretion of Cholesterol by the Liver, inThe Liver: Biology and Pathology (Arias, I.M., Jakoby, W.B., Popper, H., Schachter, D., and Shafritz, D.A., eds.) pp. 617–641, Raven Press, New York.

    Google Scholar 

  5. Spady, D.K., Turley, S.D., and Dietschy, J.M. (1985) Rates of Low Density Lipoprotein Uptake and Cholesterol Synthesis Are Regulated Independently in the Liver,J. Lipid Res. 26, 465–472.

    PubMed  CAS  Google Scholar 

  6. Goldstein, J.L., and Brown, M.S. (1976) The LDL Pathway in Human Fibroblasts: A Receptor-Mediated Mechanism for the Regulation of Cholesterol Metabolism,Curr. Top. Cell Regul. 11, 147–181.

    PubMed  CAS  Google Scholar 

  7. Goldstein, J.L., and Brown, M.S. (1977) The Low-Density Lipoprotein Pathway and Its Relation to Atherosclerosis,Ann. Rev. Biochem. 46, 897–930.

    Article  PubMed  CAS  Google Scholar 

  8. Brown, M.S., and Goldstein, J.L. (1983) Lipoprotein Receptors in the Liver,J. Clin. Invest. 72, 743–747.

    PubMed  CAS  Google Scholar 

  9. Brown, M.S., Dana, S.E., and Goldstein, J.L. (1975) Receptor-Dependent Hydrolysis of Cholesteryl Esters Contained in Plasma Low Density Lipoprotein,Proc. Natl. Acad. Sci. U.S.A. 72, 2925–2929.

    Article  PubMed  CAS  Google Scholar 

  10. Brown, M.S., Kovanen, P.T., and Goldstein, J.L. (1979) Receptor-Mediated Uptake of Lipoprotein-Cholesterol and Its Utilization for Steroid Synthesis in the Adrenal Cortex,Recent Prog. Horm. Res. 35, 215–257.

    PubMed  CAS  Google Scholar 

  11. Spady, D.K., and Dietschy, J.M. (1985) Dietary Saturated Triacylglycerols Suppress Hepatic Low Density Lipoprotein Receptor Activity in the Hamster,Proc. Natl. Acad. Sci. U.S.A. 82, 4526–4530.

    Article  PubMed  CAS  Google Scholar 

  12. Davidson, N.O., Kollmer, M.E., and Glickman, R.M. (1986) Apolipoprotein B Synthesis in Rat Small Intestine: Regulation by Dietary Triglyceride and Biliary Lipid,J. Lipid Res. 27, 30–39.

    PubMed  CAS  Google Scholar 

  13. Woollett, L.A., D.K. Spady, and Dietschy, J.M. (1992) Saturated and Unsaturated Fatty Acids Independently Regulate Low Density Lipoprotein Receptor Activity and Production Rate,J. Lipid Res. 33, 77–88.

    PubMed  CAS  Google Scholar 

  14. Woollett, L.A., Spady, D.K., and Dietschy, J.M. (1992) Regulatory Effects of the Saturated Fatty Acids 6∶0 Through 18∶0 on Hepatic Low Density Lipoprotein Receptor Activity in the Hamster,J. Clin. Invest. 89, 1133–1141.

    PubMed  CAS  Google Scholar 

  15. Ma, P.T.S., Gil, G., Sudhof, T.C., Bilheimer, D.W., Goldstein, J.L., and Brown, M.S. (1986) Mevinolin, an Inhibitor of Cholesterol Synthesis, Induces mRNA for Low Density Lipoprotein Receptor in Livers of Hamsters and Rabbits,Proc. Natl. Acad. Sci. U.S.A. 83, 8370–8373.

    Article  PubMed  CAS  Google Scholar 

  16. Hoeg, J.M., Maher, M.B., Zech, L.A., Bailey, K.R., Gregg, R.E., Lackner, K.J., Fojo, S.S., Anchors, M.A., Bojanovski, M., Sprecher, D.L., and Brewer, Jr., H.B. (1986) Effectiveness of Mevinolin on Plasma Lipoprotein Concentrations in Type II Hyperlipoproteinemia,Am. J. Cardiol. 57, 933–939.

    Article  PubMed  CAS  Google Scholar 

  17. Kempen, H.J., Van Son, K., Cohen, L.H., Griffioen, M., Verboom, H., and Havekes, L. (1987) Effect of Ketoconazole on Cholesterol Synthesis and on HMG-CoA Reductase and LDL-Receptor Activities in HepG2 Cells,Biochem. Pharmacol. 36, 1245–1249.

    Article  PubMed  CAS  Google Scholar 

  18. Gupta, A.K., Sexton, R.C., and Rudney, H. (1990) Differential Regulation of Low Density Lipoprotein Suppression of HMG-CoA Reductase Activity in Cultured Cells by Inhibitors of Cholesterol Biosynthesis,J. Lipid Res. 31, 203–215.

    PubMed  CAS  Google Scholar 

  19. Kovanen, P.T., Bilheimer, D.W., Goldstein, J.L., Jaramillo, J.J., and Brown, M.S. (1981) Regulatory Role for Hepatic Low Density Lipoprotein Receptorsin Vivo in the Dog,Proc. Natl. Acad. Sci. U.S.A. 78, 1994–1998.

    Article  Google Scholar 

  20. Kume, N., Kita, T., Mikami, A., Yokode, M., Ishii, K., Nagano, Y., and Kawai, C. (1989) Induction of mRNA for Low-Density Lipoprotein Receptors in Heterozygous Watanabe Heritable Hyperlipidemic Rabbits Treated with CS-514 (Pravastatin) and Cholesteramine,Circulation 79, 1084–1090.

    PubMed  CAS  Google Scholar 

  21. Bihain, B.E., Deckelbaum, R.J., Yen, F.T., Gleeson, A.M., Carpenter, Y.A., and Witte, L.D. (1989) Unesterified Fatty Acids Inhibit the Binding of Low Density Lipoproteins to the Human Fibroblast Low Density Lipoprotein Receptor,J. Biol. Chem. 264, 17316–17321.

    PubMed  CAS  Google Scholar 

  22. Kuo, P., Weinfeld, M., and Loscalzo, J. (1990) Effect of Membrane Fatty Acyl Composition on LDL Metabolism in Hep G2 Hepatocytes,Biochemistry 29, 6626–6632.

    Article  PubMed  CAS  Google Scholar 

  23. Rudling, M., and Angelin, B. (1993) Stimulation of Rat Hepatic Low Density Lipoprotein Receptors by Glucagon. Evidence of a Novel Regulatory Mechanism in Vivo,J. Clin. Invest. 91, 2796–2805.

    PubMed  CAS  Google Scholar 

  24. Chappell, D.A., Fry, G.L., Waknitz, M.A., and Berns, J.J. (1991) Ligand Size as a Determinant for Catabolism by the Low Density Lipoprotein (LDL) Receptor Pathway. A Lattice Model for LDL Binding,J. Biol. Chem. 266, 19296–19302.

    PubMed  CAS  Google Scholar 

  25. McKeone, B.J., Patsch, J.R., and Pownall, H.J. (1993) Plasma Triglycerides Determine Low Density Lipoprotein Composition, Physical Properties, and Cell-Specific Binding in Cultured Cells,J. Clin. Invest. 91, 1926–1933.

    PubMed  CAS  Google Scholar 

  26. Malavolti, M., Fromm, H., Ceryak, S., and Roberts I.M. (1987) Modulation of Low Density Lipoprotein Receptor Activity by Bile Acids: Differential Effects of Chenodeoxycholic and Ursodeoxycholic Acids in the Hamster,J. Lipid. Res. 28, 1281–1295.

    PubMed  CAS  Google Scholar 

  27. Bouscarel, B., Fromm, H., Ceryak, S., and Cassidy, M.M. (1991) Ursodeoxycholic Acid Increases Low-Density Lipoprotein Binding, Uptake and Degradation in Isolated Hamster Hepatocytes,Biochem. J. 280, 589–598.

    PubMed  CAS  Google Scholar 

  28. Exton, J.H. (1975) The Perfused Rat Liver,Methods Enzymol. 37, 23–40.

    Google Scholar 

  29. Redgrave, T.G., Roberts, D.C.K., and West, C.E. (1975) Separation of Plasma Lipoproteins by Density-Gradient Ultracentrifugation,Anal. Biochem. 65, 42–49.

    Article  PubMed  CAS  Google Scholar 

  30. Bradford, M.M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities Utilizing the Principle of Protein-Dye Binding,Anal. Biochem. 98, 231–237.

    Google Scholar 

  31. Irwin, D., O'Looney, P.A., Quinet, E., and Vahouny, G.V. (1984) Application of SDS Gradient Polyacrylamide Slab Gel Electrophoresis to Analysis of Apolipoprotein Mass and Radioactivity of Rat Lipoproteins,Atherosclerosis 53, 163–172.

    Article  PubMed  CAS  Google Scholar 

  32. Switzer, R.C., Merril, C.R., and Shifrin, S. (1979) A Highly Sensitive Silver Stain for Detecting Proteins and Peptides in Polyacrylamide Gels,Anal. Biochem. 98, 231–237.

    Article  PubMed  CAS  Google Scholar 

  33. Elvitch, F.R., Aronson, S.B., Feichtmeir, T.V., and Enterline, M.L. (1966) Thin Gel Electrophoresis in Agarose,Am. J. Clin. Path. 46, 692–697.

    Google Scholar 

  34. Papadopoulos, N.M., and Kintzios, J.A. (1969) Determination of Human Serum Lipoproteins by Agarose Gel Electrophoresis,Anal. Biochem. 30, 421–426.

    Article  PubMed  CAS  Google Scholar 

  35. Fromm, H., Carlson, G.L., Hofmann, A.F., Farivar, S., and Amin, P. (1980) Metabolism in Man of 7-Ketolithocholic Acid: Precursor of Cheno- and Ursodeoxycholic Acids,Am. J. Physiol., G161–G166.

  36. McFarlane, A.S. (1958) Efficient Trace-Labelling of Proteins with Iodine,Nature (London) 182, 53.

    Article  CAS  Google Scholar 

  37. Bilheimer, D.W., Eisenberg, S., and Levy, R.I. (1972) The Metabolism of Very Low Density Lipoprotein Proteins. I. Preliminaryin Vivo andin Vitro Observations,Biochim. Biophys. Acta 260, 212–221.

    PubMed  CAS  Google Scholar 

  38. Bouscarel, B., Fromm, H., and Nussbaum, R. (1993) Ursodeoxycholate Mobilizes Intracellular Ca2+ and Activates Phosphorylase a in Isolated Hepatocytes,Am. J. Physiol. 264, G243-G251.

    PubMed  CAS  Google Scholar 

  39. Prpic, V., Green, K.C., Blackmore, P.F., and Exton, J.H. (1984) Vasopressin-, Angiotensin II-, and α1-Adrenergic-Induced Inhibition of Ca2+ Transport by Rat Liver Plasma Membrane Vesicles,J. Biol. Chem. 259, 1382–1385.

    PubMed  CAS  Google Scholar 

  40. Kovanen, P.T., Brown, M.S., and Goldstein, J.L. (1979) Increased Binding of Low Density Lipoprotein to Liver Membranes from Rats Treated with 17α-Ethinyl Estradiol,J. Biol. Chem. 254, 11367–11373.

    PubMed  CAS  Google Scholar 

  41. Scatchard, G. (1949) The Attraction of Proteins for Small Molecules and Ions,Ann. NY. Acad. Sci. 51, 660–672.

    CAS  Google Scholar 

  42. McPherson, G.A. (1985)Kinetic, EBDA, Ligand, Lowry. A Collection of Radioligand Binding Analysis Programs, pp. 14–96, Elsevier Science Publishers BV, Amsterdam.

    Google Scholar 

  43. Bligh, E.G., and Dyer, W.J. (1959) A Rapid Method of Total Lipid Extraction and Purification,Can. J. Biochem. Physiol. 37, 911–917.

    PubMed  CAS  Google Scholar 

  44. Patton, G.M., Fasulo, J.M., and Robins, S.J. (1990) Analysis of Lipids by High-Performance Liquid Chromatography: Part I,J. Nutr. Biochem. 1, 493–500.

    Article  PubMed  CAS  Google Scholar 

  45. Patton, G.M., Fasulo, J.M., and Robins, S.J. (1990) Analysis of Lipids by High-Performance Liquid Chromatography. Part II: Phospholipids,J. Nutr. Biochem. 1, 549–556.

    Article  PubMed  CAS  Google Scholar 

  46. Bartlett, G.R. (1959) Phosphorus Assay in Column Chromatography,J. Biol. Chem. 234, 466–468.

    PubMed  CAS  Google Scholar 

  47. Singhal, A.K., Finver-Sadowsky, J., McSherry, C., and Mosbach, E.H. (1983) Effect of Cholesterol and Bile Acids on the Regulation of Cholesterol Metabolism in the Hamster,Biochim. Biophys. Acta 752, 214–222.

    PubMed  CAS  Google Scholar 

  48. Fromm, H., Roat, J.W., Gonzalez, V., Sarva, R.P., and Farivar, S. (1983) Comparative Efficacy and Side Effects of Ursodeoxycholic and Chenodeoxycholic Acids in Dissolving Gallstones,Gastroenterology 85, 1257–1264.

    PubMed  CAS  Google Scholar 

  49. Leiss, O., Von Bergmann, K., Streicher, U., and Strotkoetter, H. (1984) Effect of Three Different Dihydroxy Bile Acids on Intestinal Cholesterol Absorption in Normal Volunteers,Gastroenterology 87, 144–149.

    PubMed  CAS  Google Scholar 

  50. Nielsell K.B., Angelin, B., Leijd, B., and Einarsson, K. (1983) Comparative Effects of Ursodeoxycholic Acid and Chenodeoxycholic Acid on Bile Acid Kinetics and Biliary Lipid Secretion in Humans,Gastroenterology 85, 1248–1256.

    Google Scholar 

  51. Angelin, B., Raviola, C.A., Innerarity, T.L., and Mahley, R.W. (1983) Regulation of Hepatic Lipoprotein Receptors in the Dog. Rapid Regulation of Apolipoprotein B,E. Receptors, But Not of Apolipoprotein E Receptors, by Intestinal Lipoproteins and Bile Acids,J. Clin. Invest. 71, 816–831.

    PubMed  CAS  Google Scholar 

  52. Duckworth, P.F., Vlahcevic, Z.R., Studer, E.J., Gurley, E.C., Heuman, D.M., Beg, Z.H., and Hylemon, P.B. (1991) Effect of Hydrophobic Bile Acids on 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase Activity and mRNA Levels in the Rat,J. Biol. Chem. 266, 9413–9418.

    PubMed  CAS  Google Scholar 

  53. Shefer, S., Nguyen, L.B., Salen, G., Ness, G.C., Chowdhary, I.R., Lerner, S., Batta, A.K., and Tint, G.S. (1992) Differing Effects of Cholesterol and Taurocholate on Seady-State Hepatic HMG-CoA Reductase and Cholesterol 7α-Hydroxylase Activities and mRNA Levels in the Rat,J. Lipid Res. 33, 1193–1200.

    PubMed  CAS  Google Scholar 

  54. Güldütuna, S., Zimmer, G., Imhof, M., Bhatti, S., You, T., and Leuschner, U. (1993) Molecular Aspects of Membrane Stabilization by Ursodeoxycholate,Gastroenterology 104, 1736–1744.

    PubMed  Google Scholar 

  55. Leuschner, U., Fischer, H., Kurtz, W., Güldütuna, S., Hübner, K., Hellstern, A., Gatzen, M., and Leuschner, M. (1989) Ursodeoxycholic Acid in Primary Biliary Cirrhosis: Results of a Controlled Double Blind Trial,Gastroenterology 97, 1268–1274.

    PubMed  CAS  Google Scholar 

  56. Galle, P.R., Theilmann, L., Raedsch, R., Otto, G., and Stiehl, A. (1990) Ursodeoxycholate Reduces Hepatoxicity of Bile Salts in Primary Human Hepatocytes,Hepatology 12, 486–491.

    PubMed  CAS  Google Scholar 

  57. Havel, R.J. (1986) Role of the Liver in Lipoprotein Catabolism,Methods Enzymol. 129, 591–612.

    Article  PubMed  CAS  Google Scholar 

  58. Quig, D.W., Arbeeny, C.M., and Zilversmit, D.B. (1991) Effect of Hyperlipidemias in Hamsters on Lipid Transfer Protein Activity and Unidirectional Cholesteryl Ester Transfer in Plasma,Biochim. Biophys. Acta 1083, 257–264.

    PubMed  CAS  Google Scholar 

  59. Triggle, D.J. (1982) Receptor Recruitment and Cryptic Signals,Trends Pharmacol. Sci. 3, 273–274.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Bouscarel, B., Caryak, S., Robins, S.J. et al. Studies on the mechanism of the ursodeoxycholic acid-induced increase in hepatic low-density lipoprotein binding. Lipids 30, 607–617 (1995). https://doi.org/10.1007/BF02536997

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536997

Keywords

Navigation