Skip to main content
Log in

The role of microarchitecture and microstructure in the preservation of taxonomic closely related scleractinians

Die Bedeutung der Mikroarchitektur und Mikrostruktur in der Fossilüberlieferung taxonomisch eng verwandter Steinkorallen

  • Published:
Facies Aims and scope Submit manuscript

Summary

The scleractiniansAcropora palmata andAcropora cervicornis are common framebuilders in the various Pleistocene fringing reefs of Barbados. Both exihit the same diagenetic fabrics, but the rate of diagenetic alteration varies considerably.A. cervicornis is dominated by dissolution with minor calcite precipitation or neomorphism. This leads to a drastic reduction of the fossil record in older terraces. In contrast,A. palmata still has relics of unaltered microstructure in the older reefs. This difference in record potential is a result of the genetically fixed diameter of the polycrystalline fibers comprising the spherulitic trabecular microstructure; these are distinctly thicker inA. palmata.

Zusammenfassung

Die in verschieden alten Saumriffen im Pleistozän von Barbados auftretenden, riffbildenden KorallenAcropora palmata undA. cervicornis weisen entsprechende Diagenesemuster auf. Die Rate der diagenetischen Veränderung ist jedoch deutlich verschieden. BeiA. cervicornis überwiegt Lösung mit geringer Kalzitsprossung und Neomorphose; diese führt zu einer drastischen Abnahme dieser Art in älteren Riffterrassen.A. palmata hingegen zeigt bis in den ältesten Vorkommen Relikte der ursprünglichen Mikrostruktur. Diese Unterschiede werden auf die durch die genetische Information auf Artniveau festgelegte Dimension der sich aus einzelnen polykristallin zusammmengesetzten Aragonitnadeln zurückgeführt, die inA. palmata deutlich größer ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • BATHURST, R.G.C. (1971): Carbonate sediments and their diagenesis.—Dev. Sed.12, 620 pp., 359 Figs., 24 Tabs., Amsterdam-London-New York (Elsevier).

    Google Scholar 

  • BRUNI, F.S. & WENK, H.R. (1985): Replacement of aragonite by calcite in sediments from the San Cassiano Formation (Italy).—J. Sed. Petrol.55, 159–170, 10 Figs., 2 Tabs., Tulsa

    Google Scholar 

  • CONSTANTZ, B.R. (1984): Functional comparison of the microarchitecture ofAcropora palmata andAcropora cervicornis.—Palaeontographica americana54, 548–551, 1 pl., Ithaca, N.Y.

    Google Scholar 

  • — (1986): The primary surface of corals and variations in their susceptibility to diagenesis.—In SCHROEDER, J.H. & PURSER, B. (eds.): Diagenesis of Reefs.—53–76, 8 Figs., Heidelberg-Berlin-New York (Springer)

    Google Scholar 

  • DULLO, W.-Chr. (1983) Fossildiagenese im miozänen Leithakalk der Paratethys von Österreich: Ein Beispiel für Faunenverschiebungen durch Diageneseunterschiede.— Facies8, 1–112, Taf. 1–15, 22 Abb., 2 Tab., Erlangen

    Google Scholar 

  • — (1986): Variation in diagenetic sequences: An example from Pleistocene coral reefs, Red Sea, Saudi Arabia.— In: SCHROEDER, J.H. & PURSER, B. (eds.): Diagenesis of Reefs.—77–90, 7 Figs., 1 Tab., Heidelberg-Berlin-New York (Springer)

    Google Scholar 

  • DUNHAM, R.J. (1969): Early vadose silt in Townsend Mound (reef), New Mexico.—in FRIEDMAN, G.M. (ed.): Depositional environments in carbonate rocks.— Soc. Econ. Paleont. Min. Spec. Publ.14, 139–181, 21 Abb., Tulsa

  • GVIRTZMAN, G. & FRIEDMAN, G.M. (1977): Sequence of progressive diagenesis in coral reefs.—Amer. Ass. Petrol. Geol., Studies in Geology4, 357–380, 25 Figs., 7 Tabs., Tulsa

    Google Scholar 

  • HUBBARD, J.A.E.B. (1972): Cavity formation in living scleractinian reef corals and fossil analogues.—Geol. Rundsch.61, 551–564, 7 Figs., Stuttgart

    Article  Google Scholar 

  • JAMES, N.P. (1972): Holocene and Pleistocene calcareous crust (caliche) profiles: Criteria for subaerial exposure.— J. Sed. Petrol.42, 817–836, 12 Figs., 1 Tab., Tulsa

    Google Scholar 

  • — (1974): Diagenesis of scleractinian corals in the subaerial vadose environment.—J. Palaeont.48, 785–799, 11 Figs., Tulsa

    Google Scholar 

  • JAMES, N.P., STEARN, C.W. & HARRISON, R.S. (1977): Field guide book to modern and Pleistocene reef carbonates, Barbados W.I.—Third International Symp. on Coral Reefs1977, 30 pp., 9 Figs., Miami

  • MACINTYRE, I.G. (1977): Distribution of submarine cements in a modern Carribean fringing reef, Galatea Point, Panama.—J. Sed. Petrol.47, 503–516, 9 Figs., Tulsa

    Google Scholar 

  • — (1984): Preburial and shallow-subsurface alteration of modern scleractinian corals.—Palaeontographica Amer.54, 229–244, 2 pls., Ithaca N.Y.

    Google Scholar 

  • MATTHEWS, R.K. (1967): Diagenetic fabrics of biosparites from the Pleistocene of Barbadows, W.I.—J. Sed. Petrol.37, 1147–1153, 3 Figs., Tulsa

    Google Scholar 

  • — (1968): Carbonate diagenesis: Equilibrium of sedimentary mineralogy to the subaerial environment. Coral Cap of Barbados. West Indies.—J. Sed. Petrol.38, 1110–1119, 9 Figs., 1 Tab., Tulsa

    Google Scholar 

  • MESOLLELA, K.J. (1967): The uplifted reefs of Barbados, physical stratigraphy, facies relationships, and absolute chronology.—Thesis, Brown University

  • MESOLLELA, K.J., MATTHEWS, R.K., BROEKER, W.S. & THURBER, D.L. (1969): The astronomic theory of climate change: Barbados data.—J. Geology77, 250–274, 6 Figs., 2 Tabs., Chicago

    Article  Google Scholar 

  • PINGITORE, N.E. (1970): Diagenesis and porosity modification inAcropora palmata, Pleistocene of Barbados, West Indies.—J. Sed. Petrol.40, 712–722, 8 Figs., Tulsa

    Google Scholar 

  • — (1976): Vadose and phreatic diagenesis, process, products, and their recognition in corals.—J. Sed. Petrol.46, 985–1006, 10 Figs., Tulsa

    Google Scholar 

  • — (1978): The behaviour of Zn2+ and Mn2+ during carbonate diagenesis: Theory and applications.—J. Sed. Petrol.48, 799–814, 5 Figs., Tulsa

    Google Scholar 

  • SANDBERG, P.A. Aragonite cements and their occurence in ancient limestones.—in SCHNEIDERMANN, N. & HARRIS, P.M. (eds.): Carbonate cements.—Soc. Econ. Paleont. Miner. Spec. Publ.36, 33–58, 11 Figs., Tulsa

  • SCHERER, M. (1975): Cementation and replacement of Pleistocene corals from the Bahamas and Florida: Diagenetic influence on non marine environments.—N. Jb. Geol. Paläont. Abh.149, 259–285, 13 Figs., Stuttgart

    Google Scholar 

  • SCHROEDER, J.H. (1984): The petrogenetogram of corals: Spatial varations in diagenetic sequences.—Palaeonto-graphica Amer.54, 261–271, 6 Figs., Ithaca N.Y.

    Google Scholar 

  • SCHUHMACHER, H. & PLEWKA, M. (1982): The adaptive significance of mechanical properties versus morphological adjustments in skeletons ofAcropora palmata andAcropora cervicornis (Cnidaria, Scleractinia).— Proc. Fourth Intern. Coral Reef Symp.1981/2, 121–128, 11 Figs., Manila

    Google Scholar 

  • SORAUF, J.E. (1980): Biomineralization, structure, and diagenesis of the coelenterate skeleton.—Acta Palaeontol. Polonica25, 327–343, 3 Figs., pls., 13–17, Warszawa.

    Google Scholar 

  • WAINWRIGHT, S.A. (1964): Studies of the mineral phase of coral skeleton. Experimental Cell Res.34, 213–230, 8 Figs., Chicago

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dullo, WC. The role of microarchitecture and microstructure in the preservation of taxonomic closely related scleractinians. Facies 16, 11–21 (1987). https://doi.org/10.1007/BF02536746

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536746

Key Words

Navigation