Skip to main content
Log in

Superoxide production by macrophages stimulatedin vivo with synthetic ether lipids

  • Article
  • Published:
Lipids

Abstract

The anticancer activity of synthetic ether lipids may depend in part upon their ability to activate cells of the monocyte/macrophage lineage. In the present study, we have sought to determine whether 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OMe) and related ether lipids enhance superoxide production by mouse peritoneal macrophages. Ether lipids were administered intraperitoneally to C57BL/6 mice 4 d after injection with thioglycollate broth. Elicited peritoneal macrophages were harvested and purified one day later, and superoxide production was detected by measuring the superoxide dismutase inhibitable reduction of cytochrome c. Low levels of superoxide were secreted by macrophages in the absence of phorbol 12-myristate 13-acetate (PMA). When PMA was addedin vitro to macrophages from ET-18-OMe-treated mice, these cells secreted 194.2 nmol superoxide/mg protein in comparison to 53.5 nmol superoxide/mg protein for PMA-treated control cells. Thein vitro treatment of the macrophages with ET-18-OMe was not effective in stimulating superoxide secretion. Macrophages harvested from mice treated with a series of ether lipids (with and without phosphorus) were examined, and superoxide secretion was found to vary with structure. AM-18-OEt and CP-7 were the most effective compounds, secreting 8.6 and 11.9 times more superoxide, respectively, than PMA-stimulated control cells. Moreover, direct cytotoxicity of the compounds for HL60 human promyelocytic leukemic cells did not necessarily correlate with the ability of each drug to increase macrophage superoxide production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALP:

alkyllysophospholipids

AM-18-OEt:

1-N-heptadecylamido-2-O-ethyl-rac-glycero-3-phosphocholine

ET-16SOEt:

1-S-hexadecyl-2-O-ethyl-rac-glycero-3-phosphocholine

ET-18-OMe:

1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine

CP-7:

rac-1-S-hexadecyl-2-O-methylthiopropyl-3-N,N-dimethyl-β-hydroxyethyl ammonium bromide

CP-14:

rac-1-O-hexadecyl-2-methylglycerol

CP-37:

rac-1-O-β-naphthyl-2-O-methylpropyl-3-N,N-dimethyl-β-hydroxyethyl ammonium bromide

HBSS:

Hank's balanced salt solution

ID50 :

the amount of compound required to reduce [3H]thymidine incorporation into DNA to 50% of the control value

LPC:

lysophosphatidylcholine

MEM:

Eagle's minimal essential medium

O2 :

superoxide

PBS:

phosphate buffered saline

PC:

phosphatidylcholine

PMA:

phorbol 12-myristate 13-acetate

SOD:

superoxide dismutase

References

  1. Berdel, W.E., and Munder, P.G. (1987) inPlatelet-Activating Factor and Related Lipid Mediators (Snyder, F., ed.) pp. 449–467, Plenum Press, New York.

    Google Scholar 

  2. Munder, P.G., and Westphal, O. (1990)Chem. Immunol. 49, 206–235.

    Article  PubMed  CAS  Google Scholar 

  3. Berdel, W.E. (1991)Brit. J. Cancer 64, 208–211.

    PubMed  CAS  Google Scholar 

  4. Kucera, L.S., Piantadosi, C., and Modest, E.J. (1992) inMembrane Interactions of HIV, Advances in Membrane Fluidity (Aloia, R.C., ed.) Vol. 6, pp. 329–350, Wiley-Liss, New York.

    Google Scholar 

  5. Honma, Y., Kasukabe, T., Hozumi, M., Tsushima, S., and Nomura, H. (1980)Cancer Res. 46, 5803–5809.

    Google Scholar 

  6. Daniel, L.W. (1993) inCancer Chemotherapy (Hickman, J.A., and Tritton, T.R., eds.) pp. 146–178, Blackwell Scientific Publication Ltd, Oxford.

    Google Scholar 

  7. Andreesen, R., Osterholz, J., Albrecht Luckenbach, G., Costabel, U., Schulz, A., Speth, V., Munder, P.G., and Lohr, G.W. (1984)J. Natl. Cancer Inst. 72, 53–59.

    PubMed  CAS  Google Scholar 

  8. Berdel, W.E., Andreesen, R., and Munder, P.G. (1985) inPhospholipids and Cellular Regulation (Kuo, J.F., ed.) Vol. II, pp. 41–73, CRC Press, Boca Raton.

    Google Scholar 

  9. Talmadge, J.E., Schneider, M., Lenz, B., Phillips, H., and Long, C. (1987)Lipids 22, 871–877.

    PubMed  CAS  Google Scholar 

  10. Berdel, W.E., Becher, R., Edler, L., Bremer, K., Essers, U., Drozd, A., Zafferani, M., Klee, M.A.G., Bachmann, P., Korfel, A., and Westerhausen, M. (1992)Onkologie 15, 238–242.

    Google Scholar 

  11. Drings, P., Gunther, I., Gatzemeier, U., Ulbrich, F., Khanavkar, B., Schreml, W., Lorenz, J., Brugger, W., Schick, H.D., Pawel, J., and Nordström, R. (1992)Onkologie 15, 375–382.

    Article  Google Scholar 

  12. Koeller, J., Rodriguez, G., Smith, L., Eckardt, J., Shaffer, D., Weiss, G., Higashi, L., McPhillips, J., and VonHoff, D. (1993)Proc. Am. Soc. Clin. Oncol. 12, 155.

    Google Scholar 

  13. Vogler, W.R., Berdel, W.E., Olson, A.C., Winton, E.F., Heffner, L.T., and Gordon, D.S. (1992)Blood 80, 1423–1429.

    PubMed  CAS  Google Scholar 

  14. Munder, P.G., Ferber, E., Modolell, M., and Fischer, H. (1969)Int. Arch. Allergy 36, 117–128.

    PubMed  CAS  Google Scholar 

  15. Munder, P.G., Weltzien, H.U., and Modolell, M. (1976) inVII International Symposium on Immunopathology (Miescher, P.A., ed.) pp. 411–427, Schwabe Publishers, Basel.

    Google Scholar 

  16. Berdel, W.E., Bausert, W.R., Weltzien, H.U., Modolell, M.L., Widmann, K.H., and Munder, P.G. (1980)Europ. J. Cancer 16, 1199–1204.

    CAS  Google Scholar 

  17. Berdel, W.E., and Munder, P.G. (1981)Anticancer Research 1, 397–402.

    PubMed  CAS  Google Scholar 

  18. Yamamoto, N., and Ngwenya, B.Z. (1987)Cancer Res. 47, 2008–2013.

    PubMed  CAS  Google Scholar 

  19. Hayashi, H., Kudo, I., Inoue, K., Nomura, H., and Nojima, S. (1985)J. Biochem. 97, 1255–1258.

    PubMed  CAS  Google Scholar 

  20. Pignol, B., Chaumeron, S., Coulomb, H., Maisonnet, T., Vandamme, B., Broquet, C., Mencia-Huerta, J.M., and Braquet, P. (1992)Anti-Cancer Drugs 3, 599–608.

    Article  PubMed  CAS  Google Scholar 

  21. Hartung, H.P. (1983)FEBS Lett. 160, 209–212.

    Article  PubMed  CAS  Google Scholar 

  22. Schreiber, B.M., Martin, B.M., Hollander, W.J., and Franzblau, C. (1988)Atherosclerosis 69, 69–79.

    Article  PubMed  CAS  Google Scholar 

  23. Li, C.Y., Yam, L.T., and Crosby, W.H. (1972)J. Histochem. Cytochem. 20, 1049–1058.

    PubMed  CAS  Google Scholar 

  24. Johnston, Jr., R.B. (1981) inMethods for Studying Mononuclear Phagocytes (Adams, D.O., Edelson, P.J., and Koren, H.S., eds.) pp. 489–497, Academic Press, New York.

    Google Scholar 

  25. Massey, V. (1959)Biochim. Biophys. Acta 54, 255–256.

    Article  Google Scholar 

  26. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. (1951)J. Biol. Chem. 192, 265–275.

    Google Scholar 

  27. Johnston, Jr., R.B., Godzik, C.A., and Cohn, Z.A. (1978)J. Exp. Med. 148, 115–127.

    Article  PubMed  CAS  Google Scholar 

  28. Pabst, M.J., and Johnston, Jr., R.B. (1980)J. Exp. Med. 151, 101–114.

    Article  PubMed  CAS  Google Scholar 

  29. Hoffman, M., and Weinberg, J.B. (1987)J. Leuk. Biol. 42, 704–707.

    CAS  Google Scholar 

  30. Murray, H.W., Spitalny, G.L., and Nathan, C. (1985)J. Immunol. 134, 1619–1622.

    PubMed  CAS  Google Scholar 

  31. Phillips, W.A., and Hamilton, J.A. (1989)J. Immunol. 142, 2445–2449.

    PubMed  CAS  Google Scholar 

  32. Warren, J.S., Kunkel, S.L., Cunningham, T.W., Johnson, K.J., and Ward, P.A. (1988)Am. J. Pathol. 130, 489–495.

    PubMed  CAS  Google Scholar 

  33. Wing, E.J., Ampel, N.M., Waheed, A., and Shadduck, R.K. (1985)J. Immunol. 135, 2052–2056.

    PubMed  CAS  Google Scholar 

  34. Helfman, D.M., Barnes, K.C., Kinkade, J.M., Jr., Vogler, W.R., Shoji, M., and Kuo, J.F. (1983)Cancer Res. 43, 2955–2961.

    PubMed  CAS  Google Scholar 

  35. Charp, P.A., Zhou, Q., Wood, Jr., M.G., Raynor, R.L., Menger, F.M., and Kuo, J.F. (1988)Biochemistry 27, 4607–4612.

    Article  PubMed  CAS  Google Scholar 

  36. Morris-Natschke, S.L., Gumus, F., Marasco, Jr., C.J., Meyer, K.L., Marx, M., Piantadosi, C., Layne, M.D., and Modest, E.J. (1993)J. Med. Chem. 36, 2018–2025.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Schreiber, B.M., Layne, M.D. & Modest, E.J. Superoxide production by macrophages stimulatedin vivo with synthetic ether lipids. Lipids 29, 237–242 (1994). https://doi.org/10.1007/BF02536327

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536327

Keywords

Navigation