Skip to main content
Log in

Composition of mouse peritoneal macrophage phospholipid molecular species

  • Articles
  • Published:
Lipids

Abstract

The individual molecular species composition of diacyl, alkylacyl and alkenylacyl glycerophospholipids was determined in mouse peritoneal macrophages. A marked deterogeneity in the relative composition (mol%) of macrophage ether and ester phospholipid individual species was noted. High concentrations of 16∶0–20∶4 were found in ether phospholipids such as alkenylacyl glycerophosphoethanolamine (GPE; 27.5 mol%) and alkylacyl glycerophosphocholine (GPC; 16.6%) as compared to mol % levels of 16∶0–20∶4 in diacyl GPE (5.7%) and diacyl GPC (8.1%), respectively. Interestingly, alkenylacyl GPE was highly enriched in 1-ether (16∶0) relative to alkylacyl GPC. The predominant diacyl molecular species in glycerophosphoinositol (GPI) and glycerophosphoserine (GPS) were 18∶0–20∶4 (59.1%) and 16∶0–18∶1 (41.1%), respectively. It is noteworthy that the level of 18∶0–20∶4 was several times higher in diacyl GPI (59.1%) than in diacyl GPS (11.1%), diacyl GPE (25.7%), and diacyl GPC (3.7%). The most abundant molecular species in diacyl GPC and diacyl GPE were 16∶0–18∶1 (29.9%) and 18∶0–20∶4 (25.7%), respectively. The abundance of 20∶4 in ether phospholipids, specifically 16∶0–20∶4 and 18∶0–20∶4, in alkylacyl GPC is significant in view of the role these antecedents play in the biosynthesis of platelet-activating factor (PAF) and 20∶4-derived eicosanoids in stimulated macrophages. The unique molecular species composition of the peritoneal macrophage distinguishes this cell type from others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANS:

8-anilino-1-napthalenesulfonic acid ammonium salt

BHT:

butylated hydroxytoluene

DMA:

dimethylacetal

FAME:

fatty acid methyl ester

GC:

gas chromatography

GPC:

glycerophosphocholine

GPE:

glycerophosphoethanolamine

GPI:

glycerophosphoinositol

GPS:

glycerophosphoserine

HPLC:

high-performance liquid chromatography

PAF:

platelet-activating factor

PMN:

polymorphonuclear leukocytes

PUFA:

polyunsaturated fatty acids, Rf, retardation factor

RRT:

relative retention time

TLC:

thin-layer chromatography

References

  1. Nathan, C.F., and Cohn, Z.A. (1985) inTextbook of Rheumatology (Kelley, W.W., Harris, E.D., Ruddy, S., and Sledge, C.B., eds.) pp. 144–169, W.B. Saunders, Philadelphia, PA.

    Google Scholar 

  2. Somers, S.D., Johnson, W.J., and Adams, D.O. (1986) inCancer Immunology: Innovative Approaches to Therapy (Martinus Nijhoff, ed.) pp. 69–122, Boston, MA.

  3. Scott, W.A., Zrite, J.M., Hamill, A.L., Kempe, J., and Cohn, Z.A. (1980)J. Exp. Med. 152, 324–335.

    Article  PubMed  CAS  Google Scholar 

  4. Ford-Hutchinson, A.W. (1985)Fed. Proc. 44 25–29.

    PubMed  CAS  Google Scholar 

  5. Feuerstein, G., and Hallenbeck, J.M. (1987)FASEB J. 1, 186–192.

    PubMed  CAS  Google Scholar 

  6. Wey, H.E., Jakubowski, J.A., and Deykin, D. (1986)Biochim. Biophys. Acta 878, 380–386.

    PubMed  CAS  Google Scholar 

  7. Mahadevappa, V.G., and Holub, B.J. (1982)Biochim. Biophys. Acta 713, 73–79.

    PubMed  CAS  Google Scholar 

  8. Brown, M.L., Jakubowski, J.A., Leventis, L.L., and Deykin, D. (1987)Biochim. Biophys. Acta 921, 159–166.

    PubMed  CAS  Google Scholar 

  9. Mahadevappa, V.G., and Holub, B.J. (1987)J. Lipid Res. 28, 1275–1280.

    PubMed  CAS  Google Scholar 

  10. Sugiura, T., Nakajima, M.A., Sekiguchi, N., Nakagawa, Y., and Waku, K. (1983)Lipids 18, 125–129.

    CAS  Google Scholar 

  11. Chapkin, R.S., and Carmichael, S.L. (1990)J. Nutrition 120, 825–830.

    CAS  Google Scholar 

  12. Holub, B.J., Celi, B., and Skeaff, C.M. (1988)Thromb. Res. 50, 135–143.

    Article  PubMed  CAS  Google Scholar 

  13. Laposata, M., Kaiser, S.L., and Capriotti, A.M. (1988)J. Biol. Chem. 263, 3266–3273.

    PubMed  CAS  Google Scholar 

  14. Holub, B.J., and Kuksis, A. (1978)Adv. Lipid Res. 16, 1–125.

    PubMed  CAS  Google Scholar 

  15. Mahadevappa, V.G., and Holub, B.J. (1983)J. Biol. Chem. 258, 5337–5339.

    PubMed  CAS  Google Scholar 

  16. Sperling, R.I., Robin, J.L., Kylander, K.A., Lee, T.H., Lewis, R.A., and Austen, K.F. (1987)J. Immunol. 139, 4186–4191.

    PubMed  CAS  Google Scholar 

  17. Ninio, E., Mencia-Huerta, J.M., Heymans, F., and Benveniste, J. (1982)Biochim. Biophys. Acta 710, 23–31.

    PubMed  CAS  Google Scholar 

  18. Adams, D.O., and Hamilton, T.A. (1987)Immunology Rev. 97, 5–27.

    Article  CAS  Google Scholar 

  19. Nakagawa, Y., Sugiura, T., and Waku, K. (1985)Biochim. Biophys. Acta 833, 323–329.

    PubMed  CAS  Google Scholar 

  20. Nakagawa, Y., Kurihara, K., sugiura, T., and Waku, K. (1986)Biochim. Biophys. Acta 876, 601–610.

    PubMed  CAS  Google Scholar 

  21. Chapkin, R.S., Somers, S.D., and Erickson, K.L. (1988)J. Immunol. 140, 2350–2355.

    PubMed  CAS  Google Scholar 

  22. Folch, J., Lees, M., and Sloane-Stanley, G.H. (1957)J. Biol. Chem. 22, 497–509.

    Google Scholar 

  23. Chapkin, R.S., Somers, S.D., and Erickson, K.L. (1988)Lipids 23, 766–770.

    Article  PubMed  CAS  Google Scholar 

  24. Weiner, T.W., and Sprecher, H. (1984)Biochim. biophys. Acta 792, 293–303.

    PubMed  CAS  Google Scholar 

  25. Blank, M.L., Robinson, M., Fitzgerald, V., and Snyder, F. (1984)J. Chromatogr. 298, 473–482.

    Article  PubMed  CAS  Google Scholar 

  26. Myher, J.J., and Kuksis, A. (1984)Can. J. Biochem. Cell Biol. 62, 352–362.

    Article  PubMed  CAS  Google Scholar 

  27. Colard, O., Breton, M., Pepin, D., Chevy, F., Bereziat, G., and Polonovski, J. (1989)Biochem. J. 259, 333–339.

    PubMed  CAS  Google Scholar 

  28. Nakagawa, Y., Waku, K., and Ishima, Y. (1982)Biochim. Biophys. Acta 712, 667–676.

    PubMed  CAS  Google Scholar 

  29. Patton, G.M., Fasulo, J.M., and Robins, S.J. (1982)J. Lipid Res. 23, 190–196.

    PubMed  CAS  Google Scholar 

  30. Nakagawa, Y., and Horrocks, L.A. (1983)J. Lipid Res. 24, 1268–1275.

    PubMed  CAS  Google Scholar 

  31. Thompson, G.A., and Kapoulas, V.M. (1969)Methods Enzymol. 14, 668–684.

    CAS  Google Scholar 

  32. Eng, L.F., Lee, Y.L., Hayman, R.B., and Gerstl, B. (1964)J. Lipid Res. 5, 128–130.

    CAS  Google Scholar 

  33. Blank, M.L., Cress, E.A., Lee, T., Stephens, N., Piantadosi, C., and Snyder, F. (1983)Anal. Chem. 133, 430–436.

    CAS  Google Scholar 

  34. Careaga-Houck, M., and Sprecher, H. (1989)J. Lipid Res. 30, 77–87.

    PubMed  CAS  Google Scholar 

  35. Irvine, R.F. (1988) inThe Control of Tissue Damage (Glauert, M., ed.) pp. 111–125, Elsevier, Amsterdam.

    Google Scholar 

  36. Exton, J.H. (1990)J. Biol. Chem. 265, 1–4.

    PubMed  CAS  Google Scholar 

  37. Rando, R.R. (1988)FASEB J. 2, 2348–2355.

    PubMed  CAS  Google Scholar 

  38. Ford, D.A., Miyake, R., Glaser, P.E., and Gross, R.W. (1989)J. Biol. Chem. 264, 13818–13824.

    PubMed  CAS  Google Scholar 

  39. Bills, T.K., Smith, J.B., and Silver, M.J. (1977)J. Clin. Invest., 60, 1–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Akoh, C.C., Chapkin, R.S. Composition of mouse peritoneal macrophage phospholipid molecular species. Lipids 25, 613–617 (1990). https://doi.org/10.1007/BF02536011

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02536011

Keywords

Navigation