Skip to main content
Log in

The hypotriglyceridemic effect of eicosapentaenoic acid in rats is reflected in increased mitochondrial fatty acid oxidation followed by diminished lipogenesis

  • Article
  • Published:
Lipids

Abstract

The effect of eicosapentaenoic acid (EPA) on fatty acid oxidation and on key enzymes of triglyceride metabolism and lipogenesis was investigated in the liver of rats. Repeated administration of EPA to normolipidemic rats resulted in a time-dependent decrease in plasma triglycerides, phospholipids and cholesterol. The triglyceride-lowering effect was observed after one day of feeding whereas lowering of plasma cholesterol and phospholipids was observed after five days of treatment. The triglyceride content of liver was reduced after two-day treatment. At that time, increased mitochondrial fatty acid oxidation occurred whereas mitochondrial and microsomal glycerophosphate acyltransferase was inhibited. The phosphatidate phosphohydrolase activity was unchanged. Adenosine triphosphate:citrate lyase, acetyl-CoA carboxylase, fatty acid synthetase and glucose-6-phosphate dehydrogenase were inhibited during the 15 d of EPA treatment whereas peroxisomal β-oxidation was increased. At one day of feeding, however, when the hypotriglyceridemic effect was established, the lipogenic enzyme activities were reduced to the same extent in palmitic acid-treated animals as in EPA-treated rats. In cultured rat hepatocytes, the oxidation of [14C]palmitic acid to carbon dioxide and acid-soluble products was stimulated in the presence of EPA. These results suggest that the instant hypolipidemia in rats given EPA could be explained at least in part by a sudden increase in mitochondrial fatty acid oxidation, thereby reducing the availability of fatty acids for lipid synthesis in the liver for export,e.g., in the form of very low density lipoproteins, even before EPA induced peroxisomal fatty acid oxidation, reduced triglyceride biosynthesis and diminished lipogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADGAT:

acyl-CoA:diacylglycerol acyltransferase

ATP:

adenosine triphosphate

CMS:

carboxymethylcellulose

CPCT:

CTP:phosphocholine cytidylyltransferase

DHA:

docosahexaenoic acid

EDTA:

ethylenediaminetetraacetic acid

EPA:

eicosapentaenoic acid

Hepes:

N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid)

L-fraction:

peroxisome-enriched fraction

M-fraction:

mitochondrial fraction

NADH:

nicotinamide adenine dinucleotide

P-fraction:

microsomal fraction

PMA:

palmitic acid

S-fraction:

cytosolic fraction

VLDL:

very low density lipoprotein

References

  1. Harris, W.S., Connor, W.E., and McMurry, M.P. (1983)Metabolism 32, 179–184.

    Article  PubMed  CAS  Google Scholar 

  2. Phillipson, B.E., Rothrock, D.W., Connor, W.E., Harris, W.S., and Illingworth, R.D. (1985)N. Engl. J. Med. 312, 1210–1216.

    Article  PubMed  CAS  Google Scholar 

  3. Connor, W.E., Reardon, M.R., Connor, S., Wong, S., and Boston, R. (1984)J. Clin. Invest. 74, 82–89.

    PubMed  Google Scholar 

  4. Nossen, J.Ø., Rustan, A.C., Gloppestad, S.H., Målbakken, S., and Drevon, C.A. (1986)Biochim. Biophys. Acta 879, 56–65.

    PubMed  CAS  Google Scholar 

  5. Wong, S.H., Nestel, P.J., Trimble, R.P., Storer, G.B., Illman, R.J., and Topping, D.L. (1984)Biochim. Biophys. Acta 792, 103–109.

    PubMed  CAS  Google Scholar 

  6. Wong, S., Reardon, M., and Nestel, P.J. (1985)Metabolism 34, 900–905.

    Article  PubMed  CAS  Google Scholar 

  7. Wong, S., and Nestel, P.J. (1987)Atherosclerosis 64, 129–146.

    Article  Google Scholar 

  8. Goodnight, S.H., Harris, W.S., Connor, W.E., and Illingworth, D.R. (1982)Arteriosclerosis 2, 87–113.

    PubMed  CAS  Google Scholar 

  9. Yang, K.T., and Williams, M.A. (1978)Biochim. Biophys. Acta 531, 133–140.

    PubMed  CAS  Google Scholar 

  10. Nestel, P.J., Connor, W.E., Reardon, M.G., Connor, S., and Boston, R. (1984)J. Clin. Invest. 74, 82–89.

    PubMed  CAS  Google Scholar 

  11. Sanders, T.A.B., Vickers, M., and Haines, A.P. (1981)Clin. Sci. 61, 317–324.

    PubMed  CAS  Google Scholar 

  12. Harris, W.S. (1989)J. Lipid Res. 30, 785–807.

    PubMed  CAS  Google Scholar 

  13. Irritani, N., Inoguchi, K., Endo, M., Fukuda, E., and Moreta, M. (1980)Biochim. Biophys. Acta 618, 378–382.

    Google Scholar 

  14. Al-Shurbaji, A., Backstrøm, C.L., Berglund, L., Eggertsen, G., and Bjørkhem, I. (1991)Lipids 26, 385–389.

    PubMed  CAS  Google Scholar 

  15. Wong, S., and Marsh, J.B. (1988)Metabolism 37, 1177–1181.

    Article  PubMed  CAS  Google Scholar 

  16. Marsh, J.B., Topping, D.L., and Nestel, P.J. (1987)Biochim. Biophys. Acta 922, 239–243.

    PubMed  CAS  Google Scholar 

  17. Rustan, A.C., Christiansen, E.N., and Drevon, C.A. (1992)Biochem. J. 283, 333–339.

    PubMed  CAS  Google Scholar 

  18. Willumsen, N., Hexeberg, S., Skorve, J., Lundquist, M., and Berge, R.K. (1993)J. Lipid Res. 34, 13–22.

    PubMed  CAS  Google Scholar 

  19. Rustan, A.C., Nossen, J.O., Christiansen, E.N., and Drevon, C.A. (1988)J. Lipid Res. 29, 1417–1426.

    PubMed  CAS  Google Scholar 

  20. Aarsland, A., Lundquist, M., Børretsen, B., and Berge, R.K. (1990)Lipids 25, 546–548.

    PubMed  CAS  Google Scholar 

  21. Seglen, P.O. (1976)Methods Cell Biol. 13, 29–83.

    Article  PubMed  CAS  Google Scholar 

  22. Christiansen, R.B., Borreback, B., and Bremer, J. (1976)FEBS Lett. 62, 313–317.

    Article  PubMed  CAS  Google Scholar 

  23. Shimizu, S.K., Yasui, K., Toni, Y., and Yamada, H. (1979)Biochem. Biophys. Res. Commun. 91, 108–113.

    Article  PubMed  CAS  Google Scholar 

  24. Berge, R.K., Aarsland, A., Kryvi, H., Bremer, J., and Aarsæther, N. (1989)Biochem. Pharmacol. 38, 3969–3979.

    Article  PubMed  CAS  Google Scholar 

  25. Skorve, J., Asiedu, D., Rustan, A.C., Drevon, C.A., Al-Shurbaji, A., and Berge, R.K. (1990)J. Lipid Res. 31, 1627–1635.

    PubMed  CAS  Google Scholar 

  26. Skorve, J., Ruyter, B., Rustan, A., Christiansen, E.N., Drevon, C.A., and Berge, R.K. (1990)Biochem. Pharmacol. 40, 2005–2012.

    Article  PubMed  CAS  Google Scholar 

  27. Rose-Kahn, G., and Bar-Tana, J. (1985)J. Biol. Chem. 260, 8411–8415.

    PubMed  CAS  Google Scholar 

  28. Kelley, P.S., Nelson, G.J., and Hunt, J.E. (1986)Biochem. J. 235, 87–90.

    PubMed  CAS  Google Scholar 

  29. Berge, R.K., Nilsson, A., and Husøy, A.M. (1988)Biochim. Biophys. Acta 960, 417–426.

    PubMed  CAS  Google Scholar 

  30. Christiansen, E.N., Flatmark, T., and Kryvi, H. (1981)Eur. J. Cell. Biol. 26, 11–20.

    PubMed  CAS  Google Scholar 

  31. Neat, C.E., Thomassen, M.S., and Osmundsen, H. (1981)Biochem. J. 196, 149–159.

    PubMed  CAS  Google Scholar 

  32. Asiedu, D., Aarsland, A., Skorve, J., Svardal, A.M., and Berge, R.K. (1990)Biochim. Biophys. Acta 1044, 211–221.

    PubMed  CAS  Google Scholar 

  33. Aarsland, A., Aarsæther, N., Bremer, J., and Berge, R.K. (1989)J. Lipid Res. 30, 1711–1718.

    PubMed  CAS  Google Scholar 

  34. Halminski, M.A., Marsh, J.B., and Harrison, E.H. (1991)J. Nutr. 121, 1554–1561.

    PubMed  CAS  Google Scholar 

  35. Yao, Z., and Vance, D.E. (1988)J. Biol. Chem. 263, 2998–3004.

    PubMed  CAS  Google Scholar 

  36. Sleight, R., and Kent, C. (1983)J. Biol. Chem. 258, 831–835.

    PubMed  CAS  Google Scholar 

  37. Brindley, D.N. (1984)Prog. Lipid Res. 23, 115–133.

    Article  PubMed  CAS  Google Scholar 

  38. Pelech, S.L., Prtichard, P.H., Brindley, D.N., and Vance, D.E. (1983)J. Biol. Chem. 258, 6782–6788.

    PubMed  CAS  Google Scholar 

  39. Asiedu, D., Skorve, J., Demoz, A., Willumsen, N., and Berge, R.K. (1992)Lipids 27, 1–7.

    Google Scholar 

  40. Hardie, D.G., Carling, D., and Sim, T.R. (1989)TIBS 14, 20–23.

    CAS  Google Scholar 

  41. Flatmark, T., Nilsson, A., Kvannes, J., Eikholm, T.S., Fukami, M.H., Kryvi, H., and Christiansen, E.N. (1988)Biochim. Biophys. Acta 962, 122–130.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Willumsen, N., Skorve, J., Hexeberg, S. et al. The hypotriglyceridemic effect of eicosapentaenoic acid in rats is reflected in increased mitochondrial fatty acid oxidation followed by diminished lipogenesis. Lipids 28, 683–690 (1993). https://doi.org/10.1007/BF02535987

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535987

Keywords

Navigation