Skip to main content
Log in

Essentiality of dietary ω3 fatty acids for premature infants: Plasma and red blood cell fatty acid composition

  • Article
  • Published:
Lipids

Abstract

Pre-term infants, that are not breast-fed, are deprived of vital intrauterine fat accretion during late pregnancy and must rely on formula to obtain fatty acids essential for normal development, particularly of the visual system. Preterm infants (30 wk postconception) receiving human milk were compared to infants given one of the following formulae: Formula A was a commercial preterm formula with predominantly 18∶2ω6 (24.2%) and low (0.5%) 18∶3ω3; Formula B was based on soy oil and contained similar 18∶2ω6 levels (20%) and high 18∶3ω3 (2.7%); Formula C was also a soy oil-based formula (20% 18∶2, 1.4% 18∶3) but was supplemented with marine oil to provide ω3 long-chain polyunsaturated fatty acids (LCP) at a level (docosahexaenoic acid, DHA, 0.35%) equivalent to human milk. At entry (10 days of age), the fatty acid composition of plasma and red blood cell (RBC) membrane lipids of the formula groups were identical. By 36 wk postconception, the DHA content in lipids of group A was significantly reduced compared to that in the human milk and marine oil formula groups. Omega-3 LCP results were further amplified by 57 wk with compensatory increases in 22∶5ω6 in both plasma and RBC lipids. Provision of 2.7% α-linolenic acid in formula group B was sufficient to maintain 22∶6ω3 levels equivalent to those in human milk-fed infants at 36 wk but not at 57 wk. Effects on the production of thiobarbituric acid reactive substances and fragility of RBC attributable to the marine oil supplementation were negligible. The results support the essentiality of ω3 fatty acids for preterm infants to obtain fatty acid profiles comparable to infants receiving human milk. Formula for preterm infants should be supplemented with ω3 fatty acids including LCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

DHA:

docosahexaenoic acid (22∶6ω3)

EFA:

essential fatty acid(s)

EPA:

eicosapentaenoic acid (20∶5ω3)

FA:

fatty acid(s)

HM:

human milk

LCP:

longchain polyunsaturated fatty acid(s)

MCT:

medium-chain triglycerides

RBC:

red blood cell(s)

TBARS:

thiobarbituric acid reactive substances

References

  1. Brenner, R.R., and Peluffo, R.O. (1966)J. Biol. Chem. 241, 5213–5219.

    PubMed  CAS  Google Scholar 

  2. Brenner, R.R., and Peluffo, R.O. (1969)Biochim. Biophys. Acta 176, 471–479.

    PubMed  CAS  Google Scholar 

  3. Stubbs, C.D., and Smith, A.D. (1984)Biochim. Biophys. Acta 779, 89–137.

    PubMed  CAS  Google Scholar 

  4. Spector, A.A., and Yorek, M.A. (1985)J. Lipid Res. 26, 1015–1035.

    PubMed  CAS  Google Scholar 

  5. Svennerholm, L. (1968)J. Lipid Res. 9, 570–579.

    PubMed  CAS  Google Scholar 

  6. Anderson, R.D. (1970)Exp. Eye Res. 10, 339–344.

    Article  PubMed  CAS  Google Scholar 

  7. Salem, Jr., N., Kim, H.Y., and Yergey, J.A. (1986) inHealth Effects of Polyunsaturated Fatty Acids in Seafoods (Simopoulos, A.P., Kifer, R.R., and Martin, R.E., eds.) pp. 263–317, Academic Press, New York.

    Google Scholar 

  8. Wheeler, T.G., Benolken, R.M., and Anderson, R.E. (1975)Science 188, 1312–1314.

    Article  PubMed  CAS  Google Scholar 

  9. Neuringer, M., Connor, W.E., Lin, D.S., Barstad, L., and Luck, S. (1986)Proc. Natl. Acad. Sci. USA 83, 4021–4025.

    Article  PubMed  CAS  Google Scholar 

  10. Neuringer, M., Connor, W.E., Van Petten, C., and Barstad, L. (1984)J. Clin. Invest. 73, 272–276.

    Article  PubMed  CAS  Google Scholar 

  11. Carlson, S.E., Carver, J.D., and House, S.G. (1986)J. Nutr. 116, 718–726.

    PubMed  CAS  Google Scholar 

  12. Clandinin, M.T., Chappell, J.E., Leong, S., Heim, T., Swyer, P.R., and Chance, G.W. (1980)Early Hum. Dev. 4, 121–129.

    Article  PubMed  CAS  Google Scholar 

  13. Clandinin, M.T., Chappell, J.E., Leong, S., Heim, T., Swyer, P.R., and Chance, G.W. (1980)Early Hum. Dev. 4, 131–138.

    Article  PubMed  CAS  Google Scholar 

  14. Innis, S.M., Foote, K.D., MacKinnon, M.J., and King, D.J. (1990)Am. J. Clin. Nutr. 51, 994–1000.

    PubMed  CAS  Google Scholar 

  15. Sanders, T.A.B., and Younger, K.M. (1981)Br. J. Nutr. 45, 613–616.

    Article  PubMed  CAS  Google Scholar 

  16. Koletzko, B., Schmidt, E., Bremer, H.J., Haug, M., and Harzer, G. (1989)Eur. J. Pediatr. 148, 669–675.

    Article  PubMed  CAS  Google Scholar 

  17. Carlson, S.E., Rhodes, P.G., Rao, V., and Goldgar, D.E. (1987)Pediatr. Res. 21, 507–510.

    PubMed  CAS  Google Scholar 

  18. Uauy, R., Birch, D.G., Birch, E.E., Tyson, J.E., and Hoffman, D.R. (1990)Pediatr. Res. 28, 485–492.

    PubMed  CAS  Google Scholar 

  19. Clandinin, M.T., Chappell, J.E., Heim, T., Swyer, P.R., and Chance, G.W. (1981)Early Hum. Dev. 5, 355–366.

    Article  PubMed  CAS  Google Scholar 

  20. Brenner, R.R. (1969)Lipids 4, 621–623.

    Article  PubMed  CAS  Google Scholar 

  21. Cook, H.W., and Spence, M.W. (1987)Lipids 22, 613–619.

    PubMed  CAS  Google Scholar 

  22. Holman, R.T. (1986)Prog. Lipid Res. 25, 29–39.

    Article  PubMed  CAS  Google Scholar 

  23. Uauy, R., Treen, M., and Hoffman, D.R. (1989)Sem. Perinatol. 13, 118–130.

    CAS  Google Scholar 

  24. American Academy of Pediatrics Committee on Nutrition (1985)Pediatrics 75, 976–986.

    Google Scholar 

  25. Bligh, E.G., and Dyer, W.J. (1954)Can. J. Biochem. Physiol. 37, 911–917.

    Google Scholar 

  26. Morrison, W.R., and Smith, L.M. (1964)J. Lipid. Res. 5, 600–608.

    PubMed  CAS  Google Scholar 

  27. Horwitz, W. (ed.) (1980)Official Methods of Analysis of the Association of Official Analytical Chemists, 13th edn., Association of Official Analytical Chemists, Washington, D.C.

    Google Scholar 

  28. MacGee, J., and Allen, K.G. (1977)J. Am. Oil Chem. Soc. 54, 375–379.

    CAS  Google Scholar 

  29. Cynamon, H.A., Isenberg, J.N., and Nguyen, C.H. (1985)Clin. Chim. Acta 151, 169–176.

    Article  PubMed  CAS  Google Scholar 

  30. Gordon, H.D., Nitowsky, H.M., and Cornblath, M. (1955)Am. J. Dis. Child. 90, 669–681.

    CAS  Google Scholar 

  31. Holman, R.T. (1960)Nutrition 70, 405–421.

    CAS  Google Scholar 

  32. Farrell, P.M., Gutcher, G.R., Palta, M., and DeMets, D. (1988)Am. J. Clin. Nutr. 48, 220–229.

    PubMed  CAS  Google Scholar 

  33. Garg, M.L., Thomson, A.B.R., and Clandinin, M.T. (1990)J. Lipid Res. 31, 271–277.

    PubMed  CAS  Google Scholar 

  34. Carlson, S.E., Cooke, R.J., Rhodes, P.G., Peeples, J.M., Werkman, S.H., and Tolley, E.A. (1991)Pediatr. Res. 30, 404–412.

    PubMed  CAS  Google Scholar 

  35. Putnam, J.C., Carlson, S.E., DeVoe, P.W., and Barness, L.A. (1982)Am. J. Clin. Nutr. 36, 106–114.

    PubMed  CAS  Google Scholar 

  36. Carlson, S.E., Rhodes, P.G., and Ferguson, M.G. (1986)Am. J. Clin. Nutr. 44, 798–804.

    PubMed  CAS  Google Scholar 

  37. Uauy, R., Birch, D., Birch, E., and Hoffman, D.R. (1991) inHealth Effects of ω-3 Polyunsaturated Fatty Acids in Seafoods (Simopoulos, A.P., Kifer, R.R., Martin, R.E., and Barlow, S.M., eds.) pp. 506–507, Academic Press, New York.

    Google Scholar 

  38. Uauy, R., Birch, D., Birch, E., Tyson, J., and Hoffman, D.R. (1990)INFORM 1, 306.

    Google Scholar 

  39. Anderson, G.J., Connor, W.E., Corliss, J.D., and Lin, D.S. (1989)J. Lipid Res. 30, 433–441.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Hoffman, D.R., Uauy, R. Essentiality of dietary ω3 fatty acids for premature infants: Plasma and red blood cell fatty acid composition. Lipids 27, 886–895 (1992). https://doi.org/10.1007/BF02535868

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535868

Keywords

Navigation