Skip to main content
Log in

Fenton reactions in lipid phases

  • Free Radicals, Antioxidants, Skin Cancer and Related Diseases Symposium Held at the 78th AOCS Annual Meeting in New Orieans, Louisiana, May 1987
  • Published:
Lipids

Abstract

Metal catalysis of membrane lipid oxidation has been thought to occur only at cell surfaces. However, conflicting observations of the pro-oxidant activity of ferric (Fe3+) vs ferrous (Fe2+) forms of various chelates have raised questions regarding this dogma. This paper suggests that the solubilities of iron complexes in lipid phases and the corresponding abilities to initiate lipid oxidation there, either directly or via Fenton-like production of reactive hydroxyl radicals, are critical determinants of initial catalytic effectiveness.

Partitioning of Fe3+ and Fe2+ complexes and chelates into bulk phases of purified lipids was quantified by atomic absorption spectroscopy. mM solutions of iron salts partitioned into oleic acid at levels of about micromolar. Ethylenediamine tetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) chelates were somewhat less soluble, while adenosine diphosphate (ADP) chelates, and ferrioxamine were soluble as chelates at greater than 10−5 M. Solubilities of all iron compounds in methyl linoleate were 10- to 100-fold lower.

To determine whether Fenton-like reactions occur in lipid phases, H2O2 and either Fe2+ or Fe3+ and a reducing agent were partitioned into the lipid along with the spintrap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), and free radical adducts were recorded by electron paramagnetic resonance (EPR). Hydroxyl radicals (OH.) adducts were observed in oleic acid, but in lipid esters secondary peroxyl radicals predominated, and the presence of OH. adducts was uncertain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADP:

adenosine diphosphate

DFO:

desferrioxamine

DMPO:

5,5-dimethyl-1-pyrroline-N-oxide

DTPA:

diethylenetriaminepentaacetic acid

EDTA:

ethylenediamine tetraacetic acid

LOOH:

lipid hydroperoxides

OH:

hydroxyl radicals

O2 :

superoxide radical anion

AA:

atomic absorption spectroscopy

EPR:

electron paramagnetic resonance

G:

gauss

References

  1. Borg, D.C., Schaich, K.M., Elmore, J.J. Jr., and Bell, J.A. (1978)Photochem. Photobiol. 28, 887–907.

    PubMed  CAS  Google Scholar 

  2. Schaich, K.M., and Borg, D.C. (1980) inAutoxidation in Food and Biological Systems (Simic, M.G., and Karel, M., eds.), pp. 45–70, Plenum Press, New York.

    Google Scholar 

  3. Borg, D.C., and Schaich, K.M. (1983) inOxy Radicals and Their Scavenger Systems. Vol. 1: Molecular Aspects (Cohen, G., and Greenwald, R.A., eds.), pp. 122–129, Elsevier Science, New York.

    Google Scholar 

  4. Borg, D.C., and Schaich, K.M. (1984)Isr. J. Chem. 24, 38–53.

    CAS  Google Scholar 

  5. Borg, D.C., Schaich, K.M., and Forman, A. (1984) inOxygen Radicals in Chemistry and Biology (Bors, W., Saran, M., and Tait, D., eds.), pp. 123–129, Walter deGruyter, Berlin.

    Google Scholar 

  6. Sies, H., and Summer, K.-H. (1975)Eur. J. Biochem. 57, 503–512.

    Article  PubMed  CAS  Google Scholar 

  7. Goldstein, G., and Czapski, G. (1986)J. Free Rad. Biol. Med. 2, 3–11.

    CAS  Google Scholar 

  8. Kunimoto, M., Inoue, K., and Nojima, S. (1981)Biochim. Biophys. Acta 646, 169–178.

    Article  PubMed  CAS  Google Scholar 

  9. Girotti, A.W., Thomas, J.P., and Jordan, J.E. (1986)Arch. Biochem. Biophys. 251, 639–653.

    Article  PubMed  CAS  Google Scholar 

  10. Allen, A.O., Hochanadel, C.J., Ghormley, J.A., and Davis, T.W. (1952)J. Phys. Chem. 56, 575–586.

    Article  Google Scholar 

  11. Diehl, H., and Smith, G.F. (1960)The Iron Reagents: Bathophenanthroline, 2,4,6-Tripyridyl-S-Triazine Phenyl-2-Pyridyl Ketoxime, G. Frederick Smith Chem. Co., Columbus, OH.

    Google Scholar 

  12. Willard, H.H., Merritt, L.L., Jr., and Dean, J.A. (1965)Instrumental Methods of Analysis, p. 353, Van Nostrand, New York.

    Google Scholar 

  13. Cooper, S.R., McArdle, J.V., and Raymond, K.N. (1978)Proc. Natl. Acad. Sci. USA 75, 3551–3554.

    Article  PubMed  CAS  Google Scholar 

  14. Samuni, A., Carmichael, A.J., Russo, A., Mitchell, J.B., and Riesz, P. (1986)Proc. Natl. Acad. Sci. USA 83, 7593–7597.

    Article  PubMed  CAS  Google Scholar 

  15. Kornberg, R.D., and McConnell, H.M. (1971)Biochemistry 10, 1111–1120.

    Article  PubMed  CAS  Google Scholar 

  16. Gardner, H.W., and Kleiman, R. (1981)Biochim. Biophys. Acta 665, 113–125.

    PubMed  CAS  Google Scholar 

  17. Field, T.B., McCourt, J.L., and McBryde, W.A.E. (1974)Can. J. Chem. 52, 3119–3125.

    Article  CAS  Google Scholar 

  18. Warner, R.C., and Weber, I. (1953)J. Am. Chem. Soc. 75, 5086–5094.

    Article  CAS  Google Scholar 

  19. Walton, J.H., and Lewis, H.A. (1916)J. Am. Chem. Soc. 16, 633–638.

    Article  Google Scholar 

  20. Keleti, G., and Lederer, W.H. (1974)Handbook of Micromethods for the Biological Sciences, Van Nostrand Reinhold, New York.

    Google Scholar 

  21. Goddu, R.F., LeBlanc, N.F., and Wright, C.M. (1955)Anal. Chem. 27, 1251–1255.

    Article  CAS  Google Scholar 

  22. Kalyanaraman, B., Mottley, C., and Mason, R.P. (1984)J. Biochem. Biophys. Methods 9, 27–31.

    Article  PubMed  CAS  Google Scholar 

  23. Davies, M.J., and Slater, T.F. (1986)Biochem. J., 240, 789–795.

    PubMed  CAS  Google Scholar 

  24. Davies, M.J., and Slater, T.F. (1987)Biochem. J. 245, 167–173.

    PubMed  CAS  Google Scholar 

  25. Hasegawa, K., and Patterson, L.K. (1978)Photochem. Photobiol. 28, 817–823.

    CAS  Google Scholar 

  26. Patterson, L.K., and Hasegawa, K. (1978)Ber. Bunsenges. Phys. Chem. 82, 951–956.

    CAS  Google Scholar 

  27. Janzen, E.G. (1980) inFree Radicals in Biology (Pryor, W.A., ed.), Vol. 4, pp. 115–154, Academic Press, New York.

    Google Scholar 

  28. Pryor, W.A., Prier, D.G., and Church, D.F. (1981)Environ. Res. 24, 42–52.

    Article  PubMed  CAS  Google Scholar 

  29. Gardner, H.W., and Jursinic, P.A. (1981)Biochim. Biophys. Acta 665, 100–112.

    PubMed  CAS  Google Scholar 

  30. Ding, H.A. (1984)Copper-catalyzed Lipid Peroxidation in Erythrocyte Membranes, PhD thesis, SUNY Downstate Medical Center, Brooklyn, NY.

    Google Scholar 

  31. Romslo, I., and Flatmark, T. (1973)Biochim. Biophys. Acta 305, 29–40.

    Article  PubMed  CAS  Google Scholar 

  32. Morehouse, L.A., Thomas, C.E., and Aust, S.D. (1984)Arch. Biochem. Biophys. 232, 366–377.

    Article  PubMed  CAS  Google Scholar 

  33. Winston, G.W., Feierman, D.W., and Cederbaum, A.I. (1984)Arch. Biochem. Biophys. 232, 378–390.

    Article  PubMed  CAS  Google Scholar 

  34. Ramasarma, T. (1982)Biochim. Biophys. Acta 694, 69–93.

    PubMed  CAS  Google Scholar 

  35. Frimer, A., Forman, A., and Borg, D.C. (1983)Isr. J. Chem. 23, 442–445.

    CAS  Google Scholar 

  36. Chance, B., Sies, H., and Boveris, A. (1979)Physiol. Rev. 59, 527–605.

    PubMed  CAS  Google Scholar 

  37. Borg, D.C., and Schaich, K.M., inSymposium on Oxidants and Disease (Halliwell, B., ed.), Federation of the American Societies for Experimental Biology, Bethesda, MD (in press).

  38. Borg, D.C., and Schaich, K.M. inOxy-Radicals in MOlecular Biology and Pathology, UCLA Symposia on Molecular and Cellular Biology, New Series (Cerutti, P.A., Fridovich, I., and McCord, J.M., eds.), Vol. 82, Alan R. Liss, Inc., New York (in press).

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Schaich, K.M., Borg, D.C. Fenton reactions in lipid phases. Lipids 23, 570–579 (1988). https://doi.org/10.1007/BF02535600

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535600

Keywords

Navigation