Skip to main content
Log in

Polyunsaturated fatty acid changes suggesting a new enzymatic defect in Zellweger Syndrome

  • Published:
Lipids

Abstract

The fatty acid composition of red blood cells, fibroblasts, forebrain, liver and kidney were studied in a 3-month-old infant who died from Zellweger Syndrome, and the results were compared with those of age-matched controls. Besides a typical increase in the very long chain fatty acids 26∶0 and 26∶1 and a great reduction in the plasmalogen levels, confirming the diagnosis of Zellweger Syndrome, some striking changes in the polyunsaturated fatty acid patterns were discovered. The most important was a very drastic decrease in the values of 22∶6ω3 and 22∶5ω6, the two products of Δ4-desaturation. In the kidney, the level of 22∶6ω3 fell below that of 26∶0. Consequently, the ratio 26∶0/22∶6ω3 (and 26∶1/22∶6ω3) was most useful in emphasizing the fatty acid anomalies, especially in renal tissue, where the 26∶0/22∶6ω3 ratio increased to almost 200 times the normal values. Other significant, although less consistent fatty acid alterations were increases in 18∶2ω6, 18∶3ω6, 20∶3ω6, 18∶4ω3 and 20∶4ω3, and a decrease in 20∶4ω6 in some tissues. The existence is proposed of a new enzyme defect in peroxisomal disorders, involving the desaturase system of long chain polyunsaturated fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BHT:

butyl hydroxytoluene

DMA:

dimethyl acetal

EFA:

essential fatty acid

EP:

ethanolamine plasmalogen

FAME:

fatty acid methyl ester

GPC:

glycerophosphocholine

GPE:

glycerophosphoethanolamine

GPL:

glycerophospholipid

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PUFA:

polyunsaturated fatty acid

FID:

flame ionization detector

GLC:

gas liquid chromatography

TLC:

thin layer chromatography

References

  1. Goldfischer, S., Moore, C.L., Johnson, A.B., Spiro, A.J., Valsamis, M.P., Wisniewski, H.K., Ritch, R.H., Norton, W.T., Rain, I., and Gartner, L.M. (1973)Science 182, 62–64.

    Article  PubMed  CAS  Google Scholar 

  2. Hajra, A.K., Burke, C.C., and Jones, C.L. (1979),J. Biol. Chem. 254, 10896–10900.

    PubMed  CAS  Google Scholar 

  3. Brown, F.R., McAdams, A.J., Cumins, J.W., Konkol, R., Singh, I., Moser, A.B., and Moser, H.B. (1982)Johns Hopkins Med. J. 151, 344–361.

    PubMed  Google Scholar 

  4. Heymans, H.S.A., Schutgens, R.B.H., Tan, R., van den Bosch, H., and Borst, P. (1983)Nature 306, 69–70.

    Article  PubMed  CAS  Google Scholar 

  5. Schutgens, R.B.H., Heyman, H.S.A., Wanders, R.J.A., van den Bosch, H., and Tager, J.M. (1986)Eur. J. Pediatr. 144, 430–440.

    Article  PubMed  CAS  Google Scholar 

  6. Moser, H.W. (1987)Dev. Neurosci. 9, 1–18.

    PubMed  CAS  Google Scholar 

  7. Zellweger, H. (1987)Dev. Med. Child Neurol. 29, 821–829.

    Article  PubMed  CAS  Google Scholar 

  8. Martinez, M. (1988)Neurochem. Int. 13 (Suppl. 1) 148.

    Google Scholar 

  9. Lepage, G., and Roy, C.C. (1986)J. Lipid Res. 27, 114–120.

    PubMed  CAS  Google Scholar 

  10. Macala, L.J., Yu, R.K., and Ando, S. (1983)J. Lipid Res. 24, 1243–1250.

    PubMed  CAS  Google Scholar 

  11. Jamieson, J.R. (1975)J. Chromat. Sci. 13, 491–497.

    CAS  Google Scholar 

  12. Svennerholm, L., Hagberg, M.B., Haltia, M., Sourander, P., and Vanier, M.T. (1975)Acta Paediatr. Scand. 64, 489–496.

    PubMed  CAS  Google Scholar 

  13. Martinez, M., and Ballabriga, A. (1987)Lipids 22, 133–138.

    Article  PubMed  CAS  Google Scholar 

  14. Martinez, M., Ballabriga, A., and Gil-Gibernau, J.J. (1988)J. Neurosci. Res. 20, 484–490.

    Article  PubMed  CAS  Google Scholar 

  15. Mohrhauer, H., and Holman, R.T. (1963)J. Neurochem. 10, 523–530.

    Article  PubMed  CAS  Google Scholar 

  16. Martinez, M., Conde, C., and Ballabriga, A. (1974)Pediat. Res. 8, 93–102.

    PubMed  CAS  Google Scholar 

  17. Galli, C., Trzeciak, H.I., and Paoletti, R. (1971)Biochim. Biophys. Acta 248, 449–454.

    CAS  Google Scholar 

  18. Novikoff, P.M., Novikoff, A.B., Quintana, N., and Davis, C. (1973)J. Histochem. Cytochem. 21, 540–558.

    PubMed  CAS  Google Scholar 

  19. Gorgas, K. (1985)Anat. Embryol. 172, 21–32.

    Article  PubMed  CAS  Google Scholar 

  20. Fujiki, Y., Fowler, S., Shio, H., Hubbard, A.L., and Lazarow, P.B. (1982)J. Cell Biol. 93, 103–110.

    Article  PubMed  CAS  Google Scholar 

  21. Howard, B.V., Howard, W.J., de la Llera, M., and Kefalides, N.A. (1976)Atherosclerosis 23, 521–534.

    Article  PubMed  CAS  Google Scholar 

  22. Spector, A.A., Kiser, R.E., Denning, G.M., Koh, S.-W.M., and DeBault, L.E. (1979)J. Lipid Res. 20, 536–547.

    PubMed  CAS  Google Scholar 

  23. Stoll, L.L., and Spector, A.A. (1984)In Vitro 20, 732–738.

    PubMed  CAS  Google Scholar 

  24. Delplanque, B., and Jacotot, B. (1987)Lipids 22, 241–249.

    Article  PubMed  CAS  Google Scholar 

  25. Arias, J.A., Moser, A.B., and Goldfischer, S.L. (1985)J. Cell Biol. 100, 1789–1792.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Martinez, M. Polyunsaturated fatty acid changes suggesting a new enzymatic defect in Zellweger Syndrome. Lipids 24, 261–265 (1989). https://doi.org/10.1007/BF02535160

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02535160

Keywords

Navigation