Skip to main content
Log in

Differential uptake of cholesterol and plant sterols by rat erythrocytes in vitro

  • Published:
Lipids

Abstract

The in vitro uptake of radioactively labeled cholesterol and the plant sterol β-sitosterol has been examined in rat erythrocytes. From mixed micellar solutions containing egg yolk phospholipid and sodium taurocholate, the erythrocytes showed a nonlinear uptake of the two sterols. The uptake leveled off after about 45 min with the attainment of a 1∶1 total sterol-to-phospholipid ratio within the cell membrane, as determined on a mass basis. From soltuions containing egg yolk phospholipid, or purified egg yolk phosphatidylcholine, a preference for cholesterol over the plant sterol was observed, increasing with time from a cholesterol/β-sitosterol uptake ratio of unity (the media ratio) to a maximum of 2 after a 60-min incubation. Correction of the data for nonspecifically bound sterol increased the ratio to a maximum of 5 at the 30-min time point. The increase in the cholesterol/β-sitosterol uptake ratio with time, following an initial nonspecific association, showed that penetration of the plasma membrane by the sterol was required for the selectivity to be expressed. The presence of lysophosphatidylcholine or bovine serum albumin did not exert any noticeable influence over the extent of selectivity of absorption. Replacement of the egg yolk phospholipid with synthetic dipalmitoyl-phosphatidylcholine led to a loss of the sterol selectivity. No evidence was found to support a selective extraction of sterol from the erythrocyte membrane to account for the observed effects, nor was there any sign of a mass accumulation of phospholipid during the incubation. It is suggested that the media phospholipid influences the membrane permeability toward cholesterol and β-sitosterol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hernandez, H.H., Peterson, D.W., Chaikoff, I.L., and Dauben, W.G. (1953) Proc. Soc. Exp. Biol. Med. 83, 498–499.

    PubMed  CAS  Google Scholar 

  2. Swell, L., Trout, E.C., Field, H., and Treadwell, C.R. (1959) J. Biol. Chem. 234, 2286–2289.

    PubMed  CAS  Google Scholar 

  3. Sylven, C., and Borgstrom, B. (1969) J. Lipid Res. 10, 179–182.

    PubMed  CAS  Google Scholar 

  4. Shidoji, Y., Watanabe, M., Oku, T., Muto, Y., and Hosoya, N. (1980) J. Nutr. Sci. Vitaminol. 26, 183–188.

    PubMed  CAS  Google Scholar 

  5. Kuksis, A., and Huang, T.C. (1962) Can. J. Biochem. Physiol. 40, 1493–1504.

    CAS  Google Scholar 

  6. Swell, L., Trout, E.C., Vahouny, G.V., Field, H., von Schuching, S., and Treadwell, C.R. (1958) Proc. Soc. Exp. Biol. Med. 97, 337–339.

    PubMed  CAS  Google Scholar 

  7. Grundy, S.M., and Mok, H.Y.I. (1977) J. Lipid. Res. 18, 263–271.

    PubMed  CAS  Google Scholar 

  8. Sugano, M., Morioka, H., and Ikeda, I. (1977) J. Nutr. 107, 2011–2019.

    PubMed  CAS  Google Scholar 

  9. Subbiah, M.T.R. (1973) Am. J. Clin. Nutr. 26, 219–225.

    PubMed  CAS  Google Scholar 

  10. Feldman, E.B., and Borgstrom, B. (1966) Biochim. Biophys. Acta 125, 148–156.

    PubMed  CAS  Google Scholar 

  11. Sylven, C. (1970) Biochim. Biophys. Acta 203, 365–375.

    Article  PubMed  CAS  Google Scholar 

  12. Borgstorm, B. (1974) in Biomembranes, Intestinal Absorption, (Smyth, D.H., ed.), Vol. 4B, pp. 555–620, Plenum Press, New York, NY.

    Google Scholar 

  13. Child, P., and Kuksis, A. (1980) Can. J. Biochem. 58, 1215–1222.

    Article  PubMed  CAS  Google Scholar 

  14. Gardner, M.L.G. (1978) Q. J. Exp. Physiol. 63, 93–95.

    CAS  Google Scholar 

  15. Nilsson, A. (1969) Biochim. Biophys. Acta 176, 339–347.

    PubMed  CAS  Google Scholar 

  16. Kuksis, A., Myher, J.J., Marai, L., and Geher, K. (1975) J. Chromatogr. Sci. 13, 423–430.

    PubMed  CAS  Google Scholar 

  17. Nelson, G.J. (1972) in Blood Lipids and Lipoproteins: Quantitation, Composition and Metabolism, Wiley-Interscience, New York, NY.

    Google Scholar 

  18. Folch, J., Lees, M., and Sloane-Stanley, G.H., (1957) J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  19. Shaikh, N.A., and Palmer, F.B.St.C. (1976) J. Neurochem. 26, 597–603.

    Article  PubMed  CAS  Google Scholar 

  20. Roelofsen, B., Zwaal, R.F.A., Comfurius, P., Woodward, C.B., and vanDeenen, L.L.M. (1971) Biochim. Biophys. Acta. 241, 925–929.

    Article  PubMed  CAS  Google Scholar 

  21. Colema, R., Iqbal, S., Godfrey, P.P., and Billington, D. (1979) Biochem. J. 178, 201–208.

    Google Scholar 

  22. Bruckdorfer, K.R., Grahan, J.M., and Green, C. (1968) Eur. J. Biochem. 4, 512–518.

    Article  PubMed  CAS  Google Scholar 

  23. Ladbrooke, B.D., Williams, R.M., and Chapman, D. (1968) Biochim. Biophys. Acta 150, 333–340.

    Article  PubMed  CAS  Google Scholar 

  24. Martin, R.B., and Yeagle, P.L. (1978) Lipids 13, 594–597.

    Article  PubMed  CAS  Google Scholar 

  25. Cooper, R.A., Lestile, M.H., Fischkoff, S., Shinitzsky, M., and Shattil, S.J. (1978) Biochemistry 17, 327–331.

    Article  PubMed  CAS  Google Scholar 

  26. Edwards, P.A., and Green, C. (1972) FEBS Lett. 20, 97–99.

    Article  PubMed  CAS  Google Scholar 

  27. Rampone, A.J., and Machida, C.M., (1981) J. Lipid Res. 22, 744–752.

    PubMed  CAS  Google Scholar 

  28. Margolis, L.B., and Bergelson, L.D. (1979) Exp. Cell Res. 119, 145–150.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Child, P., Kuksis, A. Differential uptake of cholesterol and plant sterols by rat erythrocytes in vitro. Lipids 17, 748–754 (1982). https://doi.org/10.1007/BF02534662

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02534662

Keywords

Navigation