Skip to main content
Log in

Iodothyronines: Oxidative deiodination by hemoglobin and inhibition of lipid peroxidation

  • Published:
Lipids

Abstract

Purified rat hemoglobin catalyzes the oxidative degradation of iodothyronines to form iodide and an iodine-containing intermediate that reacts with protein. Hemoglobin also catalyzes peroxidation of linoleic acid. These observations are consistent with the reported intrinsic peroxidase activity of hemoglobin and other heme-proteins. However, incubations containing both linoleic acid and an iodothyronine produced a surprising result: deiodination was stimulated rather than competitively inhibited. In contrast, linoleic-acid peroxidation was inhibited by iodothyronines. Thus, low levels of iodothyronines (2.6×10−7M) are effective inhibitors of linoleic-acid peroxidation. Thyroxine and reverse T3 were found to be more effective in this antioxidant activity than vitamin E, glutathione, ascorbic acid and DTT. Since linoleic-acid peroxidation proceeds by a propagating free-radical mechanism, we have concluded that iodothyronines can effectively terminate the free-radical chain reaction to become oxidatively deiodinated. Consistent with this antioxidant mechanism, reverse T3 is effective in preserving red cell membranes as measured by the inhibition of erythrocyte hemolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tseng, Y.L., and Latham, K.R. (1981) Abstract, 63rd Annual Meeting of the Endocrine Society.

  2. Misra, H.P., and Fridovich, I. (1972) J. Biol. Chem. 247, 6960–6062.

    PubMed  CAS  Google Scholar 

  3. Tappel, A.L. (1961) in Autoxidation and Antioxidants (Lundberg, W.O., ed.) Vol. 1, pp. 325–366, Interscience, New York.

    Google Scholar 

  4. Mengel, C.E. (1972) Ann. N.Y. Acad. Sci. 203, 163–171.

    PubMed  CAS  Google Scholar 

  5. Wright, W.D. (1963) Nature 198, 1239–1244.

    Article  Google Scholar 

  6. Bradford, M.M. (1976) Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  7. Worthington Enzyme Manual (1972) pp. 25–26, Worthington Biochem. Corp., Freehold, NJ.

  8. Salvati, S.M., Ambrogloni, M.T., and Tentori, L. (1969) Ital. J. Biochem. 18, 1–18.

    PubMed  CAS  Google Scholar 

  9. Green, W.L. (1972) J. Chromatogr. 72, 83–91.

    Article  PubMed  CAS  Google Scholar 

  10. Svedberg, T., and Fahraeus, R. (1926) J. Am. Chem. Soc., 48, 430–438.

    Article  Google Scholar 

  11. Marcial, R.M.B., Ozwa, Y., and Chopra, I.H. (1979) Endocrinology 104, 365–371.

    Google Scholar 

  12. Visser, T.J., van der Dors-Tobe, I., Docter, R., and Hennemann, G. (1976) Biochem. J. 157, 479–482.

    PubMed  CAS  Google Scholar 

  13. Leonard, J.L., and Rosenberg, I.N. (1978) Endocrinology 103, 274–280.

    PubMed  CAS  Google Scholar 

  14. Kessler, G. and Pileggi, V. (1968) J. Clin. Chem. 14, 811–815.

    Google Scholar 

  15. Smallridge, R.C., Burman, K.D., Ward, K.E., Wartofsky, L., Dimond, R.C., Wright, F.D., and Latham, K.R. (1981) Endocrinology 108, 2336–2345.

    PubMed  CAS  Google Scholar 

  16. Lissitzky, P.S., and Bouchildoux, S. (1957) Bull. Soc. Chim. Biol. 39, 133–143.

    PubMed  CAS  Google Scholar 

  17. Balsam, A., Sexton, F., Borges, M., and Ingbar, S.H. (1983) J. Clin. Invest. 72, 1234–1245.

    PubMed  CAS  Google Scholar 

  18. Matsuura, T., Nagamachi, T., Nishinaga, H.K., and Cahnmann, H.J. (1969) J. Org. Chem. 34, 2554–2558.

    Article  CAS  Google Scholar 

  19. Plaskett, L.G. (1961) Biochem. J. 78, 652–657.

    PubMed  CAS  Google Scholar 

  20. Grimes, A.J. (1980) in Human Red Cell Metabolism, pp. 14–15, Blackwell Scientific Publications, Oxford, England.

    Google Scholar 

  21. Tappel, A.L. (1973) Fed. Proc. 32, 1870–1874.

    PubMed  CAS  Google Scholar 

  22. Ames, B.N., Cathcart, R., Schwiers, E., and Hochstein, P. (1981) Proc. Natl. Acad. Sci. USA 78, 6858–6862.

    Article  PubMed  CAS  Google Scholar 

  23. Wynn, J. (1968) Arch. Biochem. Biophys. 126, 880–891.

    Article  PubMed  CAS  Google Scholar 

  24. Rose, S., and György, P. (1952) Am. J. Physiol. 168, 414–420.

    PubMed  CAS  Google Scholar 

  25. McCay, P.B., Poyer, J.L., Pfeifer, P.M., May, H.E., and Gilliam, J.M., (1971) Lipids 6, 297–306.

    Article  CAS  Google Scholar 

  26. Oppenheimer, J.H., Schartz, H.L., and Surks, M.I. (1972) J. Clin. Invest. 51, 2493–2497.

    PubMed  CAS  Google Scholar 

  27. Hoch, F.L., Subramanian, C., Phopeshwarker, G.A., and Mead, J.E. (1981) Lipids 16, 328–335.

    PubMed  CAS  Google Scholar 

  28. de Gomez Dumm, I.N.T., de Alaniz, M.J.T., and Brenner, R.R. (1977) Adv. Exp. Med. Biol. 83, 609–616.

    PubMed  Google Scholar 

  29. Horton, L., Coburn, R.J., England, J.M., and Himsworth, R.L. (1976) Q. J. Med. (NS) 45, 101–124.

    CAS  Google Scholar 

  30. Harman, D. (1972) Am. J. Clin. Nutr. 25, 839–843.

    PubMed  CAS  Google Scholar 

  31. György, P., Cogan, G., and Rose, C. (1952) Proc. Soc. Exp. Biol. Med. 81, 536–538.

    PubMed  Google Scholar 

  32. Wright, S.W. (1951), Paediatrics 7, 386–393.

    CAS  Google Scholar 

  33. Burman, K.D., Read, J., Dimond, R.C., Strum, O., Wright, F.D., Patow, W., Earll, J.M., and Wartofsky, L. (1976) J. Clin. Endocrinol. Metab. 43, 1351–1359.

    PubMed  CAS  Google Scholar 

  34. Roti, E., Braverman, L.E., Fang, S.L., Alex, S., and Emerson, C.H. (1982) Endocrinology 111, 959–963.

    Article  PubMed  CAS  Google Scholar 

  35. Banovac, K., Bzik, L., Tislaric, T., and Sekso, M. (1980) Hormone Res. 12, 253–259.

    Article  PubMed  CAS  Google Scholar 

  36. Burman, K.D. (1978) Metabolism 27, 615–630.

    Article  PubMed  CAS  Google Scholar 

  37. Chopra, I.J., Sack, J., and Fisher, D.A. (1975) J. Clin. Invest. 55, 1137–1144.

    Article  PubMed  CAS  Google Scholar 

  38. Nakano, M., Tsutsumi, Y., and Ushijima, Y. (1971) Biochim. Biophys. Acta 252, 335–347.

    PubMed  CAS  Google Scholar 

  39. Latham, K.R., MacLeod, K.M., Papavasiliou, S.S., Martial, J.A., Seeburg, P.H., Goodman, H.M., and Baxter, J.D. (1978) in Receptors and Hormone Action (O'Malley, B.W., and Birnbaumer, L., eds.) Vol. 3, pp. 76–100, Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The opinions or assertions contained here are the authors' and are not to be construed as official or as reflecting the views of the Department of Defense or the Uniformed Services University of the Health Sciences. The experiments reported here were conducted according to the principles in the “Guide for the Care and Use of Laboratory Animals,” Institute of Laboratory Animal Resources, National Research Council DHEW Pub. No. (NIH) 74-23.

Supported by NIH Postdoctoral fellowship No. 5F32-AM-0610502.

About this article

Cite this article

Tseng, YC.L., Latham, K.R. Iodothyronines: Oxidative deiodination by hemoglobin and inhibition of lipid peroxidation. Lipids 19, 96–102 (1984). https://doi.org/10.1007/BF02534498

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02534498

Keywords

Navigation