Skip to main content
Log in

The fatty acid composition of three unicellular algal species used as food sources for larvae of the American oyster (Crassostrea virginica)

  • Published:
Lipids

Abstract

The total lipid and fatty acid content of 3 algal species,Pyramimonas virginica, Pseudoisochrysis paradoxa andChlorella sp., which have been successful as food sources for rearing larvae of the American oyster,Crassostrea virginica, was determined. Of the fatty acids of ω6 and ω3 families which have been shown to be essential fatty acids for normal growth in many animals, only the ω6 fatty acids were found to be higher in these 3 species of algae than in the traditional oyster larvae diet which consists of the algaeMonochrysis lutheri andIsochrysis galbana. The major fatty acid constituents of the total lipids of the 3 species were the C12, C14, C16 and C18 saturated fatty acids and the C16 and C18 mono- and polyunsaturated acids. These components constituted 70–93% of the total lipid in cultures of all ages. There were modest amounts of C20 and C22 polyunsaturated acids; some of these existed only in trace amounts. InP. virginica andChlorella sp., hexadecanoic acid was dominant (23–39%). The presence of large quantities of tetradecanoic acid (22–26%) and oleic acid (17–21%) was characteristic ofP. paradoxa. Chlorella sp. had the highest proportion of octadecatrienoic acid (18∶3ω3) which accounted for up to 17% of the total lipids. γ-Linolenic acid (18∶3ω6) was found only inChlorella sp., but in the 5th-day culture only. The lowest proportion of total polyethylenic acid was inP. paradoxa; however, lipid analyses showed this alga had the most lipid/individual cell. Some variations were observed in the fatty acid composition with age of the culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bruce, J.R., M. Knight and M.W. Parke, J. Mar. Biol. Assoc. U.K. 24:337 (1940).

    Google Scholar 

  2. Loosanoff, V.L., and H.C. Davis, in: “Advances in Marine Biology,” Vol. 1, edited by F.S. Russel, Academic Press, London, 1963, pp. 1–136.

    Google Scholar 

  3. Walne, P.R., Fish. Invert. London Ser. II. 26:1 (1970).

    Google Scholar 

  4. Walne, P.R., J. Fish. Res. Board Can. 30:1825 (1973).

    CAS  Google Scholar 

  5. Hartman, M., C.E. Epifanio, G. Pruder and R. Srna, Proc. Gulf Carib. Fish. Inst. 29:59 (1973).

    Google Scholar 

  6. Loosanoff, V.L., and T. Murray, Jr., Veliger 16:93 (1974).

    Google Scholar 

  7. Epifanio, C.E., E.M. Logan, and C. Turk, Proc. Eur. Mar. Biol. Symp. 10:97 (1976).

    Google Scholar 

  8. Epifanio, C.E., and C. Mootz, Proc. Natl. Shellfish Assoc., 66:32 (1976).

    Google Scholar 

  9. Ukeles, R., in “Proceedings of the Conference on Artificial Propagation of Commercially Valuable Shellfish,” College of Marine Studies, University of Delaware, 1969, pp. 43–64.

  10. Dupuy, J.L., Marine Technology Society, 9th Annual Conference Proceedings, 1973, p. 677.

  11. Dupuy, J.L., in “Physiological Ecology of Estuarine,” edited by J.F. Vernberg, Univ. S.C. Press, Columbia, SC, 1975, pp. 319–331.

    Google Scholar 

  12. Windsor, N.T., M.A. Thesis, College of William and Mary, Williamsburg, VA (1977).

  13. Flaak, A.R., and C.E. Epifanio, Mar. Biol. 45:157 (1978).

    Article  CAS  Google Scholar 

  14. Castell, J.D., and D.J. Trider, J. Fish. Res. Board Can. 31:95 (1974).

    Google Scholar 

  15. Haven, D.S., Chesapeake Sci. 6:43 (1965).

    Article  Google Scholar 

  16. Ingole, R.M., Sea Front 13:296 (1967).

    Google Scholar 

  17. Dunathan, J.P., R.M. Ingole and W.K. Havens Jr., Tech. Ser. Mar. Res. Lab., Fla. Dep. Nat. Res., St. Petersburg 58:1 (1969).

    Google Scholar 

  18. Holland, D.L., and B.E. Spencer, J. Mar. Biol. Assoc. U.K. 53:287 (1973).

    CAS  Google Scholar 

  19. Helm, M.M., D.L. Holland and R.R. Stevenson, J. Mar. Biol. Assoc. U.K. 53:673 (1973).

    Google Scholar 

  20. Giese, A.C., Oceanogr. Mar. Biol. 7:175 (1969).

    CAS  Google Scholar 

  21. Ackman, R.G., C.S. Tocher and J. Melachlan, J. Fish. Res. Board Can. 25:1603 (1968).

    CAS  Google Scholar 

  22. Watanabe, T., and R.G. Ackman, J. Fish. Res. Board Can. 31:403 (1974).

    CAS  Google Scholar 

  23. Chuecas, L., and J.P. Riley, J. Mar. Biol. Assoc. U.K. 49:97 (1969).

    Article  CAS  Google Scholar 

  24. Otsuka, H., and Y. Morimura, Plant Cell Physiol. 7:663 (1966).

    CAS  Google Scholar 

  25. Ackman, R.G., P.M. Jangaard, R.J. Hoyle and H. Brockerhoff, J. Fish. Res. Board Can. 21:747 (1964).

    CAS  Google Scholar 

  26. Dupuy, J.L., N. Windsor and C. Sutton, VIMS Spec. Rept. Appl. Mar. Sci. Ocn. Eng., No. 142, 1977, pp. 51–74.

    Google Scholar 

  27. Bligh, E.G., and W.J. Dyer, Can. J. Biochem. Physiol. 37:911 (1959).

    PubMed  CAS  Google Scholar 

  28. Morrison, W.R., and L.M. Smith, J. Lipid Res. 5:600 (1964).

    PubMed  CAS  Google Scholar 

  29. Ackman, R.G., J. Am. Oil Chem. Soc. 42:38 (1965).

    PubMed  CAS  Google Scholar 

  30. Ackman, R.G., J. Am. Oil Chem. Soc. 40:558 (1963).

    Google Scholar 

  31. Appleqvist, L.A., J. Lipid Res. 13:146 (1972).

    Google Scholar 

  32. Barnes, H., and J. Blackstock, J. Exp. Mar. Biol. Ecol. 12:103 (1973).

    Article  CAS  Google Scholar 

  33. Kates, M., and B.Z. Volcani, Biochim. Biophys. Acta 116:264 (1966).

    PubMed  CAS  Google Scholar 

  34. Kaneda, T.J., Bacteriol. 93:894 (1967).

    CAS  Google Scholar 

  35. Kaneda, T.J., Bacteriol. 98:143 (1969).

    Article  CAS  Google Scholar 

  36. Schlenk, J., H.K. Mangold, J.L. Gellerman, W.Z. Ling, R.A. Morrissette, R.T. Holman and H. Hayes, J. Am. Oil Chem. Soc. 37:47 (1960).

    Google Scholar 

  37. Williams, R.V., and R. McMillan, Science 113: 459 (1961).

    Article  Google Scholar 

  38. Klenk, Z., W. Knipprath, D. Zberhagen, and H.P. Koff, Hoppe Seylers Z. Physiol. Chem. 334:44 (1963).

    PubMed  CAS  Google Scholar 

  39. Hulanicka, D., J. Erwin and K. Bloch, J. Biol. Chem. 239–2778 (1964).

  40. Erwin, J., D. Hulanicka and K. Bloch, Comp. Biochem. Physiol. 12:191 (1964).

    Article  PubMed  CAS  Google Scholar 

  41. Tinoco, J., R. Babcock, I. Hincenbergo, B. Medwadowski and P. Miljanich, Lipids 13:6 (1978).

    Article  PubMed  CAS  Google Scholar 

  42. Yu, T.C., and R.O. Sinnhuber, Lipids 7:450 (1972).

    Article  PubMed  CAS  Google Scholar 

  43. Watanabe, T., F. Takashima and C. Ogino, Bull. Jpn. Soc. Sci. Fish. 40:181 (1974).

    CAS  Google Scholar 

  44. Watanabe, T., T. Takeuchi and C. Ogino, Bull. Jpn. Soc. Sci. Riwh. 41:263 (1975).

    CAS  Google Scholar 

  45. Millar, R.H., and J.M. Scott, J. Mar. Biol. Assoc. U.K. 47:475 (1967).

    Article  Google Scholar 

  46. Collyer, D.M., J. Mar. Biol. Assoc. U.K. 36:335 (1957).

    CAS  Google Scholar 

  47. Chu, F.L., K.L. Webb and J.L. Dupuy, Mar. Biol., submitted for publication.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. 883 of the Virginia Institute of Marine Science, Gloucester Point, VA 23062.

About this article

Cite this article

Chu, FL.E., Dupuy, J.L. The fatty acid composition of three unicellular algal species used as food sources for larvae of the American oyster (Crassostrea virginica). Lipids 15, 356–364 (1980). https://doi.org/10.1007/BF02533551

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02533551

Keywords

Navigation