Skip to main content
Log in

Noninvasive assessment of the relative roles of cerebral antioxidant enzymes by quantitation of pentose phosphate pathway activity

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Cerebral pentose phosphate pathway (PPP) plays a role in the biosynthesis of macromolecules, antioxidant defense and neurotransmitter metabolism. Studies on this potentially important pathway have been hampered by the inability to easily quantitate its activity, particularly in vivo. In this study we review the use of [1,6-13C2,6,6-2H2]glucose for measuring the relative activities of the PPP and glycolysis in a single incubation in cultured neurons and in vivo, when combined with microdialysis techniques. PPP activity in primary cerebrocortical cultures and in the caudate putamem of the rat in vivo was quantitated from data obtained by GC/MS analysis of released labeled lactate following metabolic degradation of [1,6-13C2,6,6-2H2]glucose. Exposure of cultures to H2O2 resulted in stimulation of PPP activity in a concentration-dependent fashion and subsequent cell death. Chelation of iron during H2O2 exposure exerted a protective effect thus implicating the participation of the Fenton reaction in mediating damage caused by the oxidative insult. Partial inhibition of glutathione peroxidase, but not catalase, was extremely toxic to the cultures reflecting the pivotal role of GPx in H2O2 detoxification. These results demonstrate the ability to dynamically monitor PPP activity and its response to oxidative challenges and should assist in facilitating our understanding of antioxidant pathways in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baquer, N. Z., Hothersall, J. S., and McLean, P. 1988. Funotion and regulation of the pentose phosphate pathway in brain. Vol. 29, pages 265–289,in Horecker, B. L. and Stadtman, E. R. (eds), Current Topics in Cellular Regulation.

    CAS  Google Scholar 

  2. Baquer, N. Z., Hothersall, J. S., McLean, P., and Greenbaum, A. L. 1977. Aspects of carbohydrate metabolism in developing brain. Develop. Med. Child Neurol. 19:81–104.

    Article  PubMed  CAS  Google Scholar 

  3. Zubairu, S., Hothersall, J. S., El-Hassan, A., McLean, P., and Greenbaum, L. 1983. Alternative pathways of glucose utilization in brain: Changes in the pattern of glucose utilization and of the response of the pentose phosphate pathway to 5-hydroxytryptamine. J. Neurochem. 41:76–83.

    Article  PubMed  CAS  Google Scholar 

  4. Coleman, M. Y., and Allen, N. 1978. The hexose monophosphate pathway in ethylnitrosourea induced tumors of the nervous system. J. Neurochem. 30:83–90.

    Article  PubMed  CAS  Google Scholar 

  5. Hothersall, J. S., Baquer, N. Z., Greenbaum, A. L., and McLean, P. 1979. Alternative pathways of glucose utilization in brain. Changes in the pattern of glucose utilization in brain during development and the effect of phenazine methosulfate on the integration of metabolic routes. Arch. Biochem. Biophys. 198:478–492.

    Article  PubMed  CAS  Google Scholar 

  6. Loreck, D. J., Galarraga, J., Van der Feen, J., Phang, J. M., Smith, B. H., and Cummins, C. J. 1987. Regulation of the pentose phosphate pathway in human astrocytes and gliomas. Metab. Brain Disease 2:31–46.

    Article  CAS  Google Scholar 

  7. Appel, S. H., and Parrot, B. L. 1970. Hexosemonophosphate pathway in synapses. J. Neurochem. 17:1619–1626.

    Article  PubMed  CAS  Google Scholar 

  8. Tabakoff, B., Groskopt, W., Anderson, R., and Alivisatos, S. G. A. 1974. Biogenic aldehyde metabolism, relation to pentose shunt in brain. Biochem. Pharmacol. 23:1710–1719.

    Google Scholar 

  9. Baquer, N. Z., McLean, P., and Greenbaum, A. L. 1975. Systems relationships and the control of metabolism pathways in developing brain. Pages 109–132,in Hommes, F. A., and Van den Berg, C. J., (eds), Normal and Pathological Development of Energy Metabolism, Academic Press, London.

    Google Scholar 

  10. Hothersall, J. S., Greenbaum, A. L., and McLean, P. 1982. The functional significance of the pentose phosphate pathway in synaptosomes: Protection against peroxidative damage by catecolamines and oxidants. J. Neurochem. 39:1325–1332.

    PubMed  CAS  Google Scholar 

  11. Brin, M. 1966. Erythrocyte as a biopsy tissue for functional evaluation of thiamine adequacy, J. Am. Med. Assoc. 187:762–766.

    Google Scholar 

  12. Herken, H., Lange, K., and Kolbe, H. 1969. Brain disorders induced by pharmacological blockade of the pentose phosphate pathway. Biochim. Biophys. Res. Commun. 36:93–100.

    Article  CAS  Google Scholar 

  13. Gaitonde, M. K., Evison, E., and Evans, G. M. 1983. The rate of utilization of glucosevia hexosemonophosphate shunt in brain. J. Neurochem. 41:1253–1260.

    Article  PubMed  CAS  Google Scholar 

  14. Embree, L. J., and Dreyfus, P. M. 1963. Blood transketolase determinations in nutritional disorders of the nervous system. Trans. Am. Neurol. Assoc. 88:36–42.

    PubMed  CAS  Google Scholar 

  15. Hawkins, R. A., Mans, A. M., Davis, D. W., Vina, J. R., and Hibbard, L. S. 1985. Cerebral glucose use measured with [14C]glucose labeled in the 1,2 or 6 position. Am. J. Physiol. 248: C170-C176.

    PubMed  CAS  Google Scholar 

  16. Duncan, G. E., Stumpf, W. E., Brustle, O., Givens, B. S., Breese, G. R., and Pilgrim, C. 1988. Topography of basal glucose utilization in the hippocampus determined with [1-14C]glucose and [6-14C]glucose. Neuroscience 24:877–883.

    Article  PubMed  CAS  Google Scholar 

  17. Dienel, G. A., Cruz, N. F., Nakanishi, H., Melzer, P., Moulis, P., and Sokoloff, L. 1992. Comparison of rates of local cerebral glucose utilization determined with deoxy[1-14C]glucose and deoxy[6-14C]glucose. J. Neurochem. 59:1430–1436.

    Article  PubMed  CAS  Google Scholar 

  18. Ross, B. D., Kingsley, P. B., and Ben-Yoseph, O. 1994. Measurement of pentose phosphate pathway activity in a single incubation with (1,6-13C2,6,6-2H2) glucose. Biochem. J. 302:31–38.

    PubMed  CAS  Google Scholar 

  19. Ben-Yoseph, O., Kingsley, P. B., Camp, D. M., Robinson, T. E., and Ross, B. D. 1994. Measurement of pentose phosphate pathway activity by microdialysis in vivo and in a single incubation in vitro. Neurosci. Protocols. 94-060-02-01-13.

  20. Ben-Yoseph, O., Ross, B. D., Camp, D. M., and Robinson, T. E. 1995. Dynamic measurements of cerebral pentose phosphate pathway activity in vivo. J. Neurochem. 64:1336–1342.

    Article  PubMed  CAS  Google Scholar 

  21. Rose, K., Goldberg, M. P., and Choi, D. W. 1993. Cytotoxicity in murine cortical culture. Pages 46–60,in Tyson, C. A., and Frazier, J. M. (eds.), In Vitro Biological Methods, Academic Press, San Diego, California.

    Google Scholar 

  22. Koh, J. Y., and Choi, D. W. 1987. Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J. Neurosci. Meth. 149:279–293.

    Google Scholar 

  23. Boxer, P. A., Ben-Yoseph, O., Levy, J., and Ross, B. D. 1995. Role of the glutathione pathway in the detoxification of hydrogen peroxide in culture neurons. Soc. Neurosci. Abstr. 21:99.20.

    Google Scholar 

  24. Coyle, J. and, Puttfarcken, P. 1993. Oxidative stress, glutamate and neurodegenerative disorders. Science 262:689–695.

    Article  PubMed  CAS  Google Scholar 

  25. Chaudiere, J., Wilhelmsen, E. C., and Tappel, A. L. 1984. Mechanism of selenium-glutathione peroxidase and its inhibition by mercaptocarboxylic acids and other mercaptants. J. Biol. Chem. 259:1043–1050.

    PubMed  CAS  Google Scholar 

  26. Bondy, S. G., and Lebel, C. P. 1993. The relationship between excitotoxicity and oxidative stress in the central nervous system. Free Rad. Biol. Med. 14:633–642.

    Article  PubMed  CAS  Google Scholar 

  27. Hostetler, K. Y., and Landau, B. R. 1967. Estimation of the pentose cycle contribution to glucose metabolism in tissue in vivo. Biochemistry 6:2961–2964.

    Article  PubMed  CAS  Google Scholar 

  28. Ben-Yoseph, O., Boxer, P. A., and Ross, B. D. 1994. Oxidative stress in the CNS: Monitoring the metabolic response using the pentose phosphate pathway. Dev. Neurosci. 16:328–336.

    PubMed  CAS  Google Scholar 

  29. Dykens, J. A. 1994. Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: Implication for neurodegeneration. J. Neurochem. 63:584–591.

    Article  PubMed  CAS  Google Scholar 

  30. Kish, S. J., Morito, C., and Hornykiewicz, O. 1985. Glutathione peroxidase in Parkinson's disease brain. Neurosci. Lett. 58:343–346.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Herman Bachelard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Yoseph, O., Boxer, P.A. & Ross, B.D. Noninvasive assessment of the relative roles of cerebral antioxidant enzymes by quantitation of pentose phosphate pathway activity. Neurochem Res 21, 1005–1012 (1996). https://doi.org/10.1007/BF02532410

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02532410

Key Words

Navigation