Skip to main content
Log in

Psychomotor stimulant- and opiate-induced c-fos mRNA expression patterns in the rat forebrain: Comparisons between acute drug treatment and a drug challenge in sensitized animals

  • Reward/Drug Abuse Mechanisms
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Amphetamine-, cocaine-, and morphine-induced c-fos expression patterns were examined following an injection protocol that has previously been shown to produce behavioral sensitization and enhanced dopamine release in the striatal complex. Drug-specific c-fos patterns were observed in both acute and sensitization injection paradigms. A sensitization pretreatment schedule did, however, alter the c-fos expression patterns induced by all the drugs in the caudate putamen, nucleus accumbens, and the cerebral cortex. In some striatal and cortical regions, there was an increase or recruitment of cells expressing c-fos whereas in others there was an apparent decrease or inhibition. The somatosensory cortex was one area where pretreatment with all three drugs increased c-fos expression. The results suggest that the neuronal networks that are modulated by systemic drug injections in the sensitized animal differ from those affected by the initial drug exposure; areas of overlap may indicate common ‘sensitization’ circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalivas, P. W., and Duffy, P. 1988. Effects of daily cocaine and morphine treatment on somatodendritic and terminal field dopamine release. J. Neurochem. 50:1498–1504.

    Article  PubMed  CAS  Google Scholar 

  2. Kalivas, P. W., and Duffy, P. 1989. Similar effect of daily cocaine and stress on mesocorticolimbic dopamine neurotransmission in the rat. Biol. Psychiatry. 25:913–928.

    Article  PubMed  CAS  Google Scholar 

  3. Kalivas, P. W., and Stewart, J. 1991. Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. Brain Res. 16:223–244.

    Article  CAS  Google Scholar 

  4. Acquas, E., and Di Chiara, G. 1992. Depression of mesolimbic dopamine transmission and sensitization to morphine during opiate abstinence. J. Neurochem. 58:1620–1625.

    Article  PubMed  CAS  Google Scholar 

  5. Cooper, S. J. 1991. Interaction between endogenous opioids and dopamine: implications for reward and aversion. pp 331–366, in Willner, P. and Scheel-Kruger, J. (eds), The Mesolimbic Dopamine System: From Motvation to Action, John Wiley & Sons Ltd., West Sussex, England.

    Google Scholar 

  6. Koob, G. F. 1992. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol. Sci. 13:177–184.

    Article  PubMed  CAS  Google Scholar 

  7. Cador, M., Bjijou, Y., and Stinus, L. 1995. Evidence of a complete independence of the neurobiological substrates for the induction and expression of behavioral sensitization to amphetamine. Neuroscience. 65:385–395.

    Article  PubMed  CAS  Google Scholar 

  8. Morgan, J. I., and Curran, T. 1991. Stimulus-transcription coupling in the nervous system. Annu. Rev. Neurosci. 14:421–452.

    Article  PubMed  CAS  Google Scholar 

  9. Hyman, S. E., Kosofsky, B. E., Nguyen, T. V., Cohen, B. M., and Comb, M. J. 1993. Everything activates c-fos—how can it matter? NIDA Res. Monogr. 125:25–37.

    PubMed  CAS  Google Scholar 

  10. Chang, S. L., Squinto, S. P., and Harlan, R. E. 1988. Morphine activation ofc-fos expression in rat brain. Biochem. Biophys. Res. Comm. 157:698–704.

    Article  PubMed  CAS  Google Scholar 

  11. Graybiel, A. M., Moratalla, R., and Robertson, H. A. 1990. Amphetamine and cocaine induce drug-specific activation of thec-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc. Natl. Acad. Sci. USA 87:6912–6916.

    Article  PubMed  CAS  Google Scholar 

  12. Moratalla, R., Vickers, E. A., Robertson, H. A., Cochran, B. H., and Graybiel, A. M. 1993. Coordinate expression of c-fos andjun B is induced in the striatum by cocaine. J. Neurosci. 13:423–433.

    PubMed  CAS  Google Scholar 

  13. Liu, J., Nickolenko, J., and Sharp, F. R. 1994. Morphine induces c-fos andjunB in striatum and nucleus accumbens via D1 and N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA. 91: 8537–8541.

    Article  PubMed  CAS  Google Scholar 

  14. Hope, B., Kosofsky, B., Hyman, S. E., and Nestler, E. J. 1992. Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine. Proc. Natl. Acad. Sci. USA. 89:5764–5768.

    Article  PubMed  CAS  Google Scholar 

  15. Torres, G., and Rivier, C. 1992. Differential effects of intermittent or continuous exposure to cocaine on the hypothalamic-pituitaryadrenal axis and c-fos expression. Brain Res. 571:204–211.

    Article  PubMed  CAS  Google Scholar 

  16. Norman, A. B., Lu, S. Y., Klug, J. M., and Norgren, R. B. 1993. Sensitization ofc-fos expression in rat striatum following multiple challenges with D-amphetamine. Brain Res. 603:125–128.

    Article  PubMed  CAS  Google Scholar 

  17. Persico, A. M., Schindler, C. W., O'Hara, B. F., Brannock, M. T., and Uhl, G. R. 1993. Brain transcription factor expression: effects of acute and chronic amphetamine and injection stress. Mol. Brain Res. 20:91–100.

    Article  PubMed  CAS  Google Scholar 

  18. Rosen, J. B., Chuang, E., and Iadarola, M. J. 1994. Differential induction of Fos protein and a Fos-related antigen following acute and repeated cocaine administration. Mol. Brain Res. 25:168–172.

    Article  PubMed  CAS  Google Scholar 

  19. Paulson, P. E., Camp, D. M., and Robinson, T. E. 1991. Time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacol. 103:480–492.

    Article  CAS  Google Scholar 

  20. Robinson, T. E., and Becker, J. B. 1986. Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res. Rev. 11:157–198.

    Article  CAS  Google Scholar 

  21. Kalivas, P. W., Striplin, C. D., Steketee, J. D., Klitenick, M. A., and Duffy, P. 1992. Cellular mechanisms of behavioral sensitization to drugs of abuse. Ann. N. Y. Acad. Sci. 654:128–135.

    Article  PubMed  CAS  Google Scholar 

  22. Cador, M., Dumas, S., Cole, B. J., Mallet, J., Koob, G. F., Le Moal, M., and Stinus, L. 1992. Behavioral sensitization induced by psychomotor stimulatnts or stress: search for a molecular basis and evidence for a CRF-dependent phenomenon. Ann. N. Y. Acad. Sci. 654:416–420.

    Article  PubMed  CAS  Google Scholar 

  23. Deroche, V., Marinelli, M., Maccari, S., Le Moal M., Simon, H., and Piazza, P. V. 1995. Stress-induced sensitization and glucocorticoids. I. Sensitization of dopamine-dependent locomotor effects of amphetamine and morphine depends on stress-induced corticosterone secretion. J. Neurosci. 15:7181–7188.

    PubMed  CAS  Google Scholar 

  24. Robinson, T. E., Becker, J. B., and Presty, S. K. 1982. Long-term facilitation of amphetamine-induced rotational behavior and striatal dopamine release produced by a single exposure to amphetamine: sex differences. Brain Res. 253:231–241.

    Article  PubMed  CAS  Google Scholar 

  25. Paxinos, G., and Watson, C. 1986. The Rat Brain in Stereotaxic Coordinates, Academic Press, Inc. Orlando.

    Google Scholar 

  26. Cullinan, W. E., Herman, J. P., Battaglia, D. F., Akil, H., and Watson, S. J. 1995. Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience. 64:477–505.

    Article  PubMed  CAS  Google Scholar 

  27. Sorg, B. A. 1992. Mesocorticolimbic dopamine systems: crosssensitization between stress and cocaine. Ann. N. Y. Acad. Sci. 654:136–144.

    Article  PubMed  CAS  Google Scholar 

  28. Chapin, J. K., and Lin, C.-S. 1990. The somatic sensory cortex of the rat. pp 341–380,in Kolb, B. and Tees, R. C. (eds), The Cerebral Cortex of the Rat, The MIT Press, Cambridge, MA.

    Google Scholar 

  29. Clark, D., and White, F. J. 1987. Review: D1 dopamine receptor-the search for a function: a critical evaluation of the D1/D2 dopamine receptor classification and its functional implications. Synapse. 1:347–388.

    Article  PubMed  CAS  Google Scholar 

  30. Young, S. T., Porrino, L. J., and Iadarola, M. J. 1991. Cocaine induces striatal c-Fos-immunoreactivity proteins via dopaminergic D1 receptors. Proc. Natl. Acad. Sci. USA 88:1291–1295.

    Article  PubMed  CAS  Google Scholar 

  31. Nestler, E. J., Terwilliger, R. Z., Walker, J. R., Sevarino, K. A. and Duman, R. S. 1990. Chronic cocaine treatment decreases levels of the G-protein subunits Gi and Go in discrete regions of rat brain. J. Neurochem. 55:1079–1082.

    Article  PubMed  CAS  Google Scholar 

  32. Nestler, E. J. 1993. Cellular responses to chronic treatment with drugs of abuse. Critical Reviews in Neurobiology. 7:23–39.

    PubMed  CAS  Google Scholar 

  33. Terwilliger, R. Z., Beitner-Johnson, D., Sevarino, K. A., Crain, S. M., and Nestler, E. J. 1991. A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res. 548:100–110.

    Article  PubMed  CAS  Google Scholar 

  34. Miserendino, M. J. D., and Nestler, E. J. 1995. Behavioral sensitization to cocaine: modulation by the cyclic AMP system in the nucleus accumbens. Brain Res. 674:299–306.

    Article  PubMed  CAS  Google Scholar 

  35. Henry, D. J., and White, F. J. 1991. Repeated cocaine administration causes persistent enhancement of D1 dopamine receptor sensitivity within the rat nucleus accumbens. J. Pharmacol. Exp. Ther. 258:882–890.

    PubMed  CAS  Google Scholar 

  36. Sheng, M., and Greenberg, M. E. 1990. The regulation and function ofc-fos and other immediate early genes in the nervous system. Neuron. 4:477–485.

    Article  PubMed  CAS  Google Scholar 

  37. Schoffelmeer, A. N., Rice, K. C., Jacobson, A. E., Van Gelderen, J. G., Hogenboom, F., Heijna, M. H., and Mulder, A. H. 1988. Mu-, delta-, and kappa-opioid receptor-mediated inhibition of neurotransmitter release and adenylate cyclase activity in rat brain slices: studies with fentanyl isothiocyanate. Eur. J. Pharmacol. 154:169–178.

    Article  PubMed  CAS  Google Scholar 

  38. Schoffelmeer, A. N., Rice, K. C., Heijna, M. H., Hogenboom, F., and Mulder, A. H. 1988. Fentanyl isothiocyanate reveals the existence of physically associated mu- and delta-opioid receptors mediating inhibition of adenylate cyclase in rat neostriatum. Eur. J. Pharmacol. 149:179–182.

    Article  PubMed  CAS  Google Scholar 

  39. North, R. A., Williams, J. T., Suprenant, A., and Christie, M. J. 1987. Mu and delta receptors belong to a family of receptors that are couple to potassium channels. Proc. Natl. Acad. Sci. USA. 84:5487–5491.

    Article  PubMed  CAS  Google Scholar 

  40. Fuxe, K., Agnati, L. F., Rosen, L., Bjelke, B., Cintra, A., Bortolotti, F., Tinner, B., Andersson, C., Hasselroth, U., Steinbusch, H., Gustafsson, J.-A., and Benfenati, F. 1991. Computer-assisted image analysis techniques allow a characterization of the compartments within the basal ganglia. Focus on functional compartments produced byd-amphetamine activation of the c-fos gene and its relationship to the glucocorticoid receptor. J. Chem. Neuroanat. 4: 355–372.

    Article  PubMed  CAS  Google Scholar 

  41. Berretta, S., Robertson, H. A., and Graybiel, A. M. 1992. Dopamine and glutamate agonists stimulate neuron-specific expression of Fos-like protein in the striatum. Neurophysiol. 67:767–777.

    Google Scholar 

  42. Torres, G., and Rivier, C. 1993. Cocaine-induced expression of striatalc-fos in the rat is inhibited by NMDA receptor antagonists. Brain Res. Bull. 30:173–176.

    Article  PubMed  CAS  Google Scholar 

  43. Snyder-Keller, A. M. 1991. Striatal c-fos induction by drugs and stress in neonatally dopamine-depleted rats given nigral transplants: importance of NMDA activation and relevance to sensitization phenomenon. Exp. Neurol. 113:155–165.

    Article  PubMed  CAS  Google Scholar 

  44. Beitner-Johnson, D., Guitart, X., and Nestler, E. J. 1992. Common intracellular actions of chronic morphine and cocaine in dopaminergic brain reward regions. Ann. N. Y. Acad. Sci. 654:70–87.

    Article  PubMed  CAS  Google Scholar 

  45. Graybiel, A. M. 1993. Acute effects of psychomotor stimulant drugs on gene expression in the striatum. NIDA Res. Monogr. 125:72–81.

    PubMed  CAS  Google Scholar 

  46. Robinson, T. E., and Berridge, K. C. 1993. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Reviews. 18:247–91.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Eric J. Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curran, E.J., Akit, H. & Watson, S.J. Psychomotor stimulant- and opiate-induced c-fos mRNA expression patterns in the rat forebrain: Comparisons between acute drug treatment and a drug challenge in sensitized animals. Neurochem Res 21, 1425–1435 (1996). https://doi.org/10.1007/BF02532384

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02532384

Key Words

Navigation