Skip to main content
Log in

Nitric oxide and antioxidant status in glucose and oxygen deprived neonatal and adult rat brain synaptosomes

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) has been implicated in the process of cerebral ischemia/reperfusion injury. We have examined the production of NO, as reflected by nitrite (NO2 )+nitrate (NO3 ) accumulation, from synaptosomes isolated from neonatal or adult rat brain and subjected to a period of glucose and oxygen deprivation. There was a significant increase in the amount of NO2 +NO3 production from adult synaptosomes under these conditions, whereas there was no difference compared to control in the production of NO2 +NO3 from the neonatal synaptosomes. The total antioxidant status of the synaptosomes at these different stages of brain development was found to be the same. These data suggest that the vulnerability of the adult brain to ischemia/reperfusion injury may be associated with the production of NO from nerve terminals. The ratios of antioxidant capacity to NO production under such conditions have been shown here to be different between the neonatal and adult nerve terminals. Thus the well documented resistance of neonatal brain to ischemia/reperfusion injury may involve the neonatal nerve terminal being under less oxidative stress than the adult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Volpe, J. J. 1990. Brain injury in the premature infant: is it preventable? Pediatric Res., 27:S28-S233.

    CAS  Google Scholar 

  2. Phillis J. W. 1994. A “radical” view of cerebral ischemic injury. Prog. in Neurobiol. 42:441–448.

    Article  CAS  Google Scholar 

  3. Kinuta, Y., Kikuchi, H., Ishikawa, M., Kimuru, M., and Itokawa, Y. 1989. Lipid peroxidation in focal cerebral ischemia. J. Neurosurg. 71:421–429.

    Article  PubMed  CAS  Google Scholar 

  4. Nagafuji, T., Sugiyama, M., Matsui, T., Muto, A. and Naito, S. 1995. Nitric Oxide Synthase in cerebral ischemia. Molec. and Chem. Neuropath. 26:107–157.

    CAS  Google Scholar 

  5. Keelan, J., Bates, T. E. and Clark, J. B. Intrasynaptosomal free calcium concentration during rat brain development: effects of hypoxia, aglycaemia and ischemia. J. Neurochem. (In press).

  6. Knowles, R. G. and Moncada, S. 1994. Nitric oxide synthases in mammals. Biochem. J. 298:249–258.

    PubMed  CAS  Google Scholar 

  7. Booth, R. F. G. and Clark, J. B. 1978. A rapid method for the preparation of relatively pure metabolically competent synaptosomes from rat brain. Biochem. J., 176:365–370.

    PubMed  CAS  Google Scholar 

  8. Bright, C. M., Ellis, D. 1992. Intracellular pH changes induced by hypoxia and anoxia in isolated sheep heart Purkinje-Fibers. Experimental Physiol. 7:165–175.

    Google Scholar 

  9. Clark, J. B. and Nicklas, W. J. 1970. The metabolism of rat brain mitochondria. J. Biol. Chem. 245:4724–4731.

    PubMed  CAS  Google Scholar 

  10. Thore, A. 1979. Technical aspects of the bioluminescent firefly luciferase assay of ATP, Science Tools, 26. 30–34.

    CAS  Google Scholar 

  11. Snyder, S. H. 1992. Nitric Oxide: first in a new class of neurotransmitters? Science 257:494–496.

    Article  PubMed  CAS  Google Scholar 

  12. Green, L. C., Wager, D. A., Glogowsk, J., Skipper, P. L., Wishnok, J. S. and Tannenbaum, S. R. 1982. Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal. Biochem. 126:131–138.

    Article  PubMed  CAS  Google Scholar 

  13. Gorbunov, N., and Esposito, E. 1994. Activation of glutamate receptors stimulates the formation of nitrite in synaptosomes from rat cerebellum. J. Neurochem. 62:2205–2211.

    Article  PubMed  CAS  Google Scholar 

  14. Brand, M. P., Heales, S. J. R., and Land, J. M. and Clark, J. B. 1995. Tetrahydrobiopterin deficiency and brain nitric oxide synthase in the hphl mouse. J. Inher. Metab. Dis. 18:33–39.

    Article  PubMed  CAS  Google Scholar 

  15. Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V. and Milner, A. 1993. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 84:407–412.

    PubMed  CAS  Google Scholar 

  16. Lowry, O. H., Rosenbrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 193:265–275.

    PubMed  CAS  Google Scholar 

  17. Matsumoto, T., Pollock, J. S., Nakane, M. and Forstermann, U. 1993. Developmental changes of cytosolic and particulate Nitric Oxide Synthase in rat brain. Develop. Brain. Res. 73:199–203.

    Article  CAS  Google Scholar 

  18. Trifiletti, R. R. 1992. Neuroprotective effects of N(G)—Nitro-L-arginine in focal stroke in the 7-day old rat. Eur. J. Pharm. 218: 197–198.

    Article  CAS  Google Scholar 

  19. Williams, S. R., Sahota, S. K. and Tasker, R. C. 1995. The effect of depolarization on energetic recovery from ischemia in the neonatal and mature brain studied by31P MRS in superfused brain slices. Proc. Soc. Magnetic Resonance. 3:1772.

    Google Scholar 

  20. Lipton, S. A., Choi, Y. B., Pan, Z. H., Lei, S. Z., Chen, H. S. V., Sucher, N. J., Loscalzo, J., Singel, D. J., and Stamler, J. S. 1993. A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632.

    Article  PubMed  CAS  Google Scholar 

  21. Bolanos J. P., Heales S. J. R., Land, J. M. and Clark, J. B. 1995. Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary culture. J. Neurochem. 64:1965–1972.

    Article  PubMed  CAS  Google Scholar 

  22. Goss-Sampson, M. A. 1987. “Neurochemical and neurophysiological studies in experimental Vitamin E deficiency”. Ph.D. Thesis. University of London.

  23. Abdel-Latif, A. A., Brody, J., Ramahi, H. 1976. Studies on Na,K-ATPase of the nerve endings and appearance of electrical activity in developing rat brain. J. Neurochem. 14:1133–1141.

    Article  Google Scholar 

  24. Clark, J. B. 1990. In: N. M. Van Gelder, R. F. Butterworth and B. D. Drujan (Eds), (Mal) Nutrition and the Infant Brain, Wiley-Liss Inc., 239–248.

  25. Almeida, A., Brooks, K. J., Sammut, I., Keelan, J., Davey, G. P., Clark, J. B. and Bates, T. E. 1995. The postnatal development of the complexes of the electron transport chain in synaptic mitochondria from rat brain, Develop. Neurosc. 17:212–218.

    CAS  Google Scholar 

  26. Bates, T. E., Almeida, A., Heales, S. J. R. and Clark, J. B. 1994. Postnatal development of the complexes of the electron transport chain in isolated rat brain mitochondria. Develop. Neurosc. 16: 321–327.

    CAS  Google Scholar 

  27. Mishra, O. P., Delivoria-Papadopoulous, M. 1992. Modification of modulatory sites of NMDA receptor in the fetal guinea pig brain during development. Neurochem. Res. 17:1223–1228.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keelan, J., Brand, M.P., Bates, T.E. et al. Nitric oxide and antioxidant status in glucose and oxygen deprived neonatal and adult rat brain synaptosomes. Neurochem Res 21, 923–927 (1996). https://doi.org/10.1007/BF02532342

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02532342

Key Words

Navigation