Skip to main content
Log in

Major substrates for microbial sulfate reduction in the sediments of Ise Bay, Japan

  • Published:
Ecological Research

Abstract

To clarify the anaerobic microbial interactions in the process of carbon mineralization in marine eutrophic environments, the microbial sulfate reduction and methane production rates were examined in coastal marine sediments of Ise Bay, Japan, in autumn 1990. Sulfate reduction rates (51–210 nmol ml−1 day−1 at 24°C) were much higher than the methane production ones (<1.78 nmol ml−1 day−1) in the surface sediments (top 2 cm) at the six stations surveyed (water depth: 10.7–23.3 m). Substrates for sulfate-reducing bacteria (SRB) were estimated after the addition of a specific inhibitor for SRB (20 mmol l−1 molybdate) into the sediment slurry, from the substrate accumulation rates. In the presence of the inhibitor, sulfate reduction was completely stopped and volatile fatty acids (mainly acetate) were accumulated, although hydrogen was not. Methane production occurred markedly accompanied by consumption of the accumulated acetate from the third day after the addition of molybdate. The maximum rate of methane production was 1.2–1.9 μmol ml−1 day−1, which was similar to those in highly polluted freshwater sediments such as the Tama River, Tokyo, Japan. These results show that acetate is a common major substrate for sulfate reduction and methane production, and SRB competitively inhibit potential acetoclastic methanogenesis in coastal sediments. Methanogens may potentially inhabit the sediments at low levels of population density and activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banat I. M., Lindström E. B., Nedwell D. B. &Balba M. T. (1981) Evidence for coexistence of two distinct functional groups of sulfate-reducing bacteria in salt marsh sediment.Applied and Environmental Microbiology42: 985–992.

    PubMed  CAS  Google Scholar 

  • Cappenberg T. H. &Prins R. A. (1974) Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a freshwater lake. III. Experiments with14C-labelled substrates.Antonie van Leeuwenhoek, Journal of Microbiology and Serology40: 457–469.

    Article  CAS  Google Scholar 

  • Christensen D. (1984) Determination of substrates oxidized by sulfate reduction in intact cores of marine sediments.Limnology and Oceanography29: 189–192.

    Article  CAS  Google Scholar 

  • Conrad R. (1989) Control of methane production in terrestrial ecosystems. In:Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere (eds M. O. Andreae & D. S. Schimel) pp. 39–58. John Wiley and Sons, Chichester.

    Google Scholar 

  • Devereux R., Kane M. D., Winfrey J. &Stahl D. A. (1992) Genus- and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria.Systematic and Applied Microbiology15: 601–609.

    CAS  Google Scholar 

  • Fukui M. &Takii S. (1987) Distribution of lactate-, propionate-, and acetate-oxidizing sulfate-reducing bacteria in various aquatic sediments.Japanese Journal of Limnology48: 249–256.

    CAS  Google Scholar 

  • Fukui M. &Takii S. (1989) Reduction of tetrazolium salts by sulfate-reducing bacteria.FEMS Microbiology Ecology62: 13–20.

    Article  CAS  Google Scholar 

  • Fukui M. &Takii S. (1990) Seasonal variations of population density and activity of sulfate-reducing bacteria in offshore and reed sediments of a hypertrophic freshwater lake.Japanese Journal of Limnology53: 63–71.

    Google Scholar 

  • Fukui M., Suh J., Yonezawa Y. &Urushigawa Y. (1993) Effects ofp-chlorophenol on sulfate reduction in marine sediments.Journal of the National Institute for Resources and Environment2: 315–321.

    CAS  Google Scholar 

  • Fukui M., Suwa Y. &Urushigawa Y. (1996) High survival efficiency and the ribosomal RNA decaying pattern ofDesulfobacter latus, a high specific acetate-utilizing organism, during starvation.FEMS Microbiology Ecology19: 17–25.

    Article  CAS  Google Scholar 

  • Graaf W., Wellsbury P., Parkes R. J. &Cappenberg T. E. (1996) Comparison of acetate turnover in methanogenic and sulfate-reducing sediments by radiolabeling and stable isotope labeling and by use of specific inhibitors: Evidence for isotope exchange.Applied and Environmental Microbiology62: 772–777.

    PubMed  Google Scholar 

  • Jones J. G. &Simon B. M. (1981) Differences in microbial decomposition processes in profundal and littoral lake sediments, with particular reference to the nitrogen cycle.Journal of General Microbiology123: 297–312.

    CAS  Google Scholar 

  • Jørgensen B. B. (1977) Bacterial sulfate reduction within reduced microniches of oxidized marine sediments.Marine Biology41: 7–18.

    Article  Google Scholar 

  • Jørgensen B. B. (1978) A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments 1. Measurement with radio tracer techniques.Geomicrobiological Journal1: 11–28.

    Google Scholar 

  • Miwa H., Hiyama C. &Yamamoto M. (1985) High performance liquid chromatography of short-, longchain fatty acids as 2-nitrophenyl hydrazides.Journal of Chromatography321: 165–174.

    Article  CAS  Google Scholar 

  • Muellar-Harvey I. &Parkes R. J. (1987) Measurement of volatile fatty acids in pore water from marine sediments by HPLC.Estuarine, Coastal and Shelf Science25: 567–579.

    Article  Google Scholar 

  • Nedwell D. B. (1984) The input and mineralization of organic carbon in anaerobic aquatic sediments.Advances in Microbial Ecology7: 93–131.

    CAS  Google Scholar 

  • Nedwell D. B. &Takii S. (1988) Bacterial sulphate reduction in sediment of European salt marsh: Acid-volatile and tin-reducible products.Estuarine, Coastal and Shelf Science26: 599–606.

    Article  CAS  Google Scholar 

  • Oremland R. S. &Capone D. G. (1988) Use of ‘specific’ inhibitors in biogeochemistry and microbial ecology.Advances in Microbial Ecology10: 285–383.

    CAS  Google Scholar 

  • Parkes R. J., Gibson G. R., Mueller-Harvey I., Buckingham W. J. &Herbert R. J. (1989) Determination of the substrates for sulphate-reducing bacteria within marine and estuarine sediments with different rates of sulphate reduction.Journal of General Microbiology135: 175–187.

    CAS  Google Scholar 

  • Rabus R., Nordhaus R., Ludwig W. &Widdel F. (1993) Complete oxidation of toluene under strictly anoxic conditions by a sulfate-reducing bacterium.Applied and Environmental Microbiology59: 1444–1451.

    PubMed  CAS  Google Scholar 

  • Reuter P., Rabus R., Wilkes H.et al. (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulfate-reducing bacteria.Nature372: 455–458.

    Article  Google Scholar 

  • Suh J., Fukui M., Suwa Y., Yamagishi T., Urushigawa Y. &Mori T. (1992) Analysis of substrates for methanogenesis in anaerobic sludges using specific inhibitors.Water Science and Technology26: 847–856.

    Google Scholar 

  • Suh J., Fukui M., Yamagishi T., Urushigawa Y. &Mori T. (1993a) Effect of sulfate load on biological propionate oxidation in anaerobic sludge.Environmental Science6: 239–249.

    Google Scholar 

  • Suh J., Fukui M., Urushigawa Y. &Mori T. (1993b) Sulfate and sulfide as factors controlling methanogenesis in sulfate-poor anaerobic sludge.Journal of Japanese Society for Water Environment16: 633–637.

    Article  CAS  Google Scholar 

  • Suh J., Fukui M., Yamagishi T., Urushigawa Y. &Mori T. (1993c) Changes in substrate metabolism by sulfidogens and methanogens with increasing sulfate load in anaerobic sludge.Journal of Japanese Society for Water Environment16: 645–651.

    CAS  Google Scholar 

  • Takii S. (1989) Methanogenesis in sediments of the polluted lower reaches of the Tama River.Japanese Journal of Limnology50: 235–246.

    CAS  Google Scholar 

  • Takii S. (1995) Methanogenesis in aquatic sediments and its control factors.Biseibutsu no Seitai20: 101–122.

    Google Scholar 

  • Takii S. &Fukui M. (1991) Relative importance of methanogenesis, sulfate reduction and denitrification in sediments of the lower Tama River.Bulletin of Japanese Society of Microbial Ecology6: 9–17.

    Google Scholar 

  • Takii S. &Fukui M. (1996) Comparison of anaerobic mineralization processes in sediments between littoral reed and offshore sites in a shallow hypertrophic lake.Hydrobiologia319: 37–45.

    Article  CAS  Google Scholar 

  • Ward D. M. &Winfrey M. R. (1985) Interaction between methanogenic and sulfate-reducing bacteria in sediments.Advances in Aquatic Microbiology3: 141–179.

    Google Scholar 

  • Whitman W. B., Bowen T. L. &Boone D. R. (1992) The methanogenic bacteria. In:The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. 2nd ed. (eds A. Balows, H. G. Trüper, M. Dworkin, W. Harder & D. Schleifer) pp. 719–767. Springer-Verlag, New York.

    Google Scholar 

  • Widdel F. (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In:Biology of Anaerobic Microorganisms. (ed. A. J. B. Zehnder) pp. 469–585. John Wiley and Sons, New York.

    Google Scholar 

  • Widdel F. &Hansen T. A. (1992) The dissimilatory sulfate- and sulfur-reducing bacteria. In:The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. 2nd ed. (eds) A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. D. Schleifer) pp. 583–624. Springer-Verlag, New York.

    Google Scholar 

  • Widdel F. &Bak F. (1992) Gram-negative mesotrophic sulfate-reducing bacteria. In:The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications. 2nd ed. (eds A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. D. Schleifer) pp. 3353–3378. Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Fukui, M., Suh, J., Yonezawa, Y. et al. Major substrates for microbial sulfate reduction in the sediments of Ise Bay, Japan. Ecol. Res. 12, 201–209 (1997). https://doi.org/10.1007/BF02523785

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02523785

Key words

Navigation