Skip to main content
Log in

Microstamp patterns of biomolecules for high-resolution neuronal networks

  • Cellular Engineering
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A microstamping technique has been developed for high-resolution patterning of proteins on glass substrates for the localisation of neurons and their axons and dendrites. The patterning process uses a microfabricated polydimethylsiloxane stamp with micrometer length features to transfer multiple types of biomolecules to silanederivatised substrates, using glutaraldehyde as a homobifunctional linker. To test the efficacy of the procedure, substrates are compared in which poly-d-lysine (PDL) was physisorbed and patterned by photoresist with those stamped with PDL. Fluorescein isothiocyanate labelled poly-I-lysine was used to verify the presence and uniformity of the patterns on the glass substrates. As a biological assay, B104 neuroblastoma cells were plated on stamped and physisorbed glass coverslips. Pattern compliance was determined as the percentage of cells on the pattern 8h after plating. Results indicate that the stamping and photoresist patterning procedure are equivalent. Substrates stamped with PDL had an average pattern compliance of 52.6±4.4%, compared to 54.6±8.1% for physisorbed substrates. Measures of background avoidance were also equivalent. As the procedure permits successive stamping of multiple proteins, each with its own micropattern, it should be very useful for defining complex substrates to assist in cell patterning and other cell guidance studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Britland, S., Perridge, C., Denyer, M., Curtis, A. andWilkinson, C. (1996): ‘Morphogenetic guidance cues can interact synergestically and hierarchically in steering nerve cell growth,’Exp. Biol. Online,1, (2)

  • Carter, S. B. (1965): ‘Principles of cell motility. The directionality of cell movement and cancer invasion,’Nature,208, pp. 1183–1187

    Article  Google Scholar 

  • Corey, J. M., Brunette, A. L., Chen, M. S., Weyhenmeyer, J. A. andWheeler, B. C. (1997): ‘Differentiated B104 neuroblastoma cells are a high-resolution assay for micropatterned substrates,’J. Neurosci. Meth.,75, pp. 91–97

    Article  Google Scholar 

  • Corey, J. M., Wheeler, B. C. andBrewer, G. J. (1991a): ‘Compliance of hippocampal neurons to patterned substrate networks,’J. Neurosci. Res.,30, pp. 300–307

    Article  Google Scholar 

  • Corey, J. M., Wheeler, B. C. andBrewer, G. J. (1991b): ‘Localization of hippocampal neurons to chemically modified siliton nitride surfaces.’Ann. Meeting of the Society for Neuroscience. Vol. 17, 210, New Orleans, USA

    Google Scholar 

  • Corey, J. M., Wheeler, B. C. andBrewer, G. J. (1996): ‘Micrometer resolution silane-based patterning of hippocampal neurons: Critical variables in photoresist and laser ablation processes for substrate fabrication,’IEEE Trans.,BME-43, pp. 944–954

    Google Scholar 

  • Curtis, A. S. G. andClark, P. (1990): ‘The effects of topographic and mechanical properties of materials on cell behaviour,’Crit. Rev. Biocomput.,5, pp. 343–362

    Google Scholar 

  • Dulcey, C., Gregor, J., Krauthamer, V., Stenger, D., Fare, T. andCalvert, J. (1991): ‘Deep UV photochemistry of chemisorbed monolayers: Patterned coplanar molecular assemblies,’Science,252, pp. 551–554

    Article  Google Scholar 

  • Elender, G., Khner, M. andSackmann, E. (1996): ‘Funtionalisation of Si/SiO2 and glass surfaces with ultrathin dextran films and deposition of lipid bilayers,’Biosens. Bioelectron.,11, pp. 565–577

    Article  Google Scholar 

  • Goodman, C. S. andShatz, C. J. (1993): ‘Developmental mechanisms that generate precise patterns of neuronal connectivity,’Cell,72/Neuron,10,Suppl., pp. 77–98

    Article  Google Scholar 

  • Hammarback, J. A., Palm, S. L., Furcht, L. T. andLetourneau, P. C. (1985): ‘Guidance of neurite outgrowth by pathways of substratum-adsorbed laminin,’J. Neurosci. Res.,13, pp. 213–220

    Article  Google Scholar 

  • Hickman, J. J., Bhatia, S. K., Quong, J. N., Shoen, P., Stenger, D. A., Pike, C. andCotman, C. W. (1994): ‘Rational pattern design for in vitro cellular networks using surface photochemistry,’J. Vac. Sci. Technol. A,12, pp. 607–616

    Article  Google Scholar 

  • Ivanova, O. Y. andMargolis, L. B. (1973): ‘The use of phospholipid film for shaping cell cultures,’Nature,242, pp. 200–201

    Article  Google Scholar 

  • Jeon, N. L., Clem, P. G., Nuzzo, R. G. andPayne, D. A. (1995): ‘Patterning of dielectric oxide thin layers by microcontact printing of self-assembled monolayers,’J. Mat. Res.,10, pp. 2996–2999

    Google Scholar 

  • Kendall, D. L. (1975): ‘On etching very narrow grooves in silicon,’Appl. Phys. Lett.,26, pp. 195–198

    Article  Google Scholar 

  • Kleinfeld, D., Kahler, K. H. andHockberger, P. E. (1988): ‘Controlled outgrowth of dissociated neurons on patterned substrates,’J. Neurosci.,8, pp. 4098–4120

    Google Scholar 

  • Letourneau, P. (1975): ‘Cell-to-substratum adhesion and guidance of axonal elongation,’Dev. Biol.,44, pp. 92–101

    Article  Google Scholar 

  • Lom, B., Healy, K. E. andHockberger, P. E. (1993): ‘A versatile technique for patterning biomolecules onto glass substrates,’J. Neurosci. Meth.,50, pp. 385–397

    Article  Google Scholar 

  • Lopez, G. P., Albers, M. W., Schreiber, S. L., Carroll, R., Peralta, E. andWhitesides, G. M. (1993): ‘Convenient methods for patterning the adhesion of mammalian cells to surfaces using self-assembled monolayers of aklanethiolates on gold,’J. Am. Chem. Soc.,115, pp. 5877–5878

    Article  Google Scholar 

  • Matsuzawa, M., Liesi, P. andKnoll, W. (1996): ‘Chemically modifying glass surfaces to study substratum-guided neurite outgrowth in culture,’J. Neurosci. Meth.,69, pp. 189–196

    Article  Google Scholar 

  • Nelson, P. G., Yu, C., Fields, R. D. andNeale, E. A. (1989): ‘Synaptic connections in vitro: modulation of number and efficacy by electrical activity,’Science,244, pp. 585–587

    Article  Google Scholar 

  • Schubert, D., Brass, B. andDumas, J. P. (1986): ‘Protein complexity of central nervous system cell lines,’J. Neurosci.,6, pp. 2829–2836

    Google Scholar 

  • Schubert, D., Heinemann, S., Carlisle, W., Tarikas, H., Kimes, B., Patrick, J., Steinbach, J. H., Culp, W. andBrandt, B. L. (1974): ‘Clonal cell lines from the rate central nervous system,’Nature,249, pp. 224–227

    Article  Google Scholar 

  • Singhvi, R., Kumar, A., Lopez, G. P., Stephanopolous, G. N., Wang, D. I. C., Whitesides, G. M. andIngber, D. E. (1994): ‘Engineering cell shape and function,’Science,264, pp. 696–698

    Article  Google Scholar 

  • Stenger, D. A., Georger, J. H., Dulcey, C. S., Hickman, J. J., Rudolph, A. S., Nielsen, T. B., McCort, S. M. andCalvert, J. M. (1992): ‘Coplanar molecular assemblies of amino- and perfluorinates alkylsilanes: characterizatiopn and geometric definition of mammalian cell adhesion and growth,’J. Am. Chem. Soc.,114, pp. 8435–8442

    Article  Google Scholar 

  • Uenishi, Y., Tsugai, M. andMehregany, M. (1995): ‘Micro-optomechanical devices fabricated by anisotropic etching of (110) silicon,’J. Micromech. Microeng.,5, pp. 305–312

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. Wheeler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Branch, D.W., Corey, J.M., Weyhenmeyer, J.A. et al. Microstamp patterns of biomolecules for high-resolution neuronal networks. Med. Biol. Eng. Comput. 36, 135–141 (1998). https://doi.org/10.1007/BF02522871

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02522871

Keywords

Navigation